Properties

Label 46410ca2
Conductor 4641046410
Discriminant 2.069×10132.069\times 10^{13}
j-invariant 3587463640922212920685941312400 \frac{35874636409222129}{20685941312400}
CM no
Rank 11
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x36871x13735y^2+xy=x^3-6871x-13735 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x36871xz213735z3y^2z+xyz=x^3-6871xz^2-13735z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x38904843x614105658y^2=x^3-8904843x-614105658 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 0, -6871, -13735])
 
gp: E = ellinit([1, 0, 0, -6871, -13735])
 
magma: E := EllipticCurve([1, 0, 0, -6871, -13735]);
 
oscar: E = elliptic_curve([1, 0, 0, -6871, -13735])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2ZZ/2Z\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(4,119)(-4, 119)2.07570658730886403145591725242.0757065873088640314559172524\infty
(82,41)(-82, 41)0022
(2,1)(-2, 1)0022

Integral points

(82,41) \left(-82, 41\right) , (4,119) \left(-4, 119\right) , (4,115) \left(-4, -115\right) , (2,1) \left(-2, 1\right) , (88,211) \left(88, 211\right) , (88,299) \left(88, -299\right) , (3428,198941) \left(3428, 198941\right) , (3428,202369) \left(3428, -202369\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  46410 46410  = 235713172 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  2068594131240020685941312400 = 243252761321722^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{6} \cdot 13^{2} \cdot 17^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  3587463640922212920685941312400 \frac{35874636409222129}{20685941312400}  = 243252761321723131063932^{-4} \cdot 3^{-2} \cdot 5^{-2} \cdot 7^{-6} \cdot 13^{-2} \cdot 17^{-2} \cdot 31^{3} \cdot 10639^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.24458830415289739358033953211.2445883041528973935803395321
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.24458830415289739358033953211.2445883041528973935803395321
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.96021420415132850.9602142041513285
Szpiro ratio: σm\sigma_{m} ≈ 3.5474963505012843.547496350501284

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 2.07570658730886403145591725242.0757065873088640314559172524
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.571569269307463581954869322010.57156926930746358195486932201
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 128 128  = 2222222 2^{2}\cdot2\cdot2\cdot2\cdot2\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 9.49128077923853019280762127649.4912807792385301928076212764
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

9.491280779L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.5715692.075707128429.491280779\displaystyle 9.491280779 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.571569 \cdot 2.075707 \cdot 128}{4^2} \approx 9.491280779

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   46410.2.a.bz

q+q2+q3+q4q5+q6q7+q8+q9q104q11+q12q13q14q15+q16q17+q18+4q19+O(q20) q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} - q^{7} + q^{8} + q^{9} - q^{10} - 4 q^{11} + q^{12} - q^{13} - q^{14} - q^{15} + q^{16} - q^{17} + q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 135168
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 6 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I4I_{4} split multiplicative -1 1 4 4
33 22 I2I_{2} split multiplicative -1 1 2 2
55 22 I2I_{2} nonsplit multiplicative 1 1 2 2
77 22 I6I_{6} nonsplit multiplicative 1 1 6 6
1313 22 I2I_{2} nonsplit multiplicative 1 1 2 2
1717 22 I2I_{2} nonsplit multiplicative 1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 2.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[64261, 2, 0, 1], [30941, 2, 0, 1], [1, 4, 0, 1], [92817, 4, 92816, 5], [65521, 2, 0, 1], [74257, 4, 55694, 9], [46413, 4, 8, 11], [1, 0, 4, 1], [39783, 2, 66298, 92819]]
 
GL(2,Integers(92820)).subgroup(gens)
 
Gens := [[64261, 2, 0, 1], [30941, 2, 0, 1], [1, 4, 0, 1], [92817, 4, 92816, 5], [65521, 2, 0, 1], [74257, 4, 55694, 9], [46413, 4, 8, 11], [1, 0, 4, 1], [39783, 2, 66298, 92819]];
 
sub<GL(2,Integers(92820))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 92820=223571317 92820 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 , index 4848, genus 00, and generators

(64261201),(30941201),(1401),(928174928165),(65521201),(742574556949),(464134811),(1041),(3978326629892819)\left(\begin{array}{rr} 64261 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 30941 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 92817 & 4 \\ 92816 & 5 \end{array}\right),\left(\begin{array}{rr} 65521 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 74257 & 4 \\ 55694 & 9 \end{array}\right),\left(\begin{array}{rr} 46413 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 39783 & 2 \\ 66298 & 92819 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[92820])K:=\Q(E[92820]) is a degree-190720892353904640190720892353904640 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/92820Z)\GL_2(\Z/92820\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 1 1
33 split multiplicative 44 2210=251317 2210 = 2 \cdot 5 \cdot 13 \cdot 17
55 nonsplit multiplicative 66 9282=2371317 9282 = 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17
77 nonsplit multiplicative 88 6630=2351317 6630 = 2 \cdot 3 \cdot 5 \cdot 13 \cdot 17
1313 nonsplit multiplicative 1414 3570=235717 3570 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17
1717 nonsplit multiplicative 1818 2730=235713 2730 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 46410ca consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
44 Q(7,663)\Q(\sqrt{7}, \sqrt{663}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(5,663)\Q(\sqrt{-5}, \sqrt{-663}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(5,7)\Q(\sqrt{5}, \sqrt{-7}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type split split nonsplit nonsplit ord nonsplit nonsplit ord ss ord ord ord ord ord ss
λ\lambda-invariant(s) 7 2 1 3 1 1 1 1 1,1 1 1 1 1 1 1,1
μ\mu-invariant(s) 0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0,0

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.