Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 465.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
465.b1 | 465a2 | \([1, 1, 0, -162, 729]\) | \(474734543401/564975\) | \(564975\) | \([2]\) | \(96\) | \(0.014967\) | |
465.b2 | 465a1 | \([1, 1, 0, -7, 16]\) | \(-47045881/129735\) | \(-129735\) | \([2]\) | \(48\) | \(-0.33161\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 465.b have rank \(1\).
Complex multiplication
The elliptic curves in class 465.b do not have complex multiplication.Modular form 465.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.