Properties

Label 465.b
Number of curves 22
Conductor 465465
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 465.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
465.b1 465a2 [1,1,0,162,729][1, 1, 0, -162, 729] 474734543401/564975474734543401/564975 564975564975 [2][2] 9696 0.0149670.014967  
465.b2 465a1 [1,1,0,7,16][1, 1, 0, -7, 16] 47045881/129735-47045881/129735 129735-129735 [2][2] 4848 0.33161-0.33161 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 465.b have rank 11.

Complex multiplication

The elliptic curves in class 465.b do not have complex multiplication.

Modular form 465.2.a.b

sage: E.q_eigenform(10)
 
q+q2q3q4+q5q62q73q8+q9+q104q11+q122q14q15q16+2q17+q188q19+O(q20)q + q^{2} - q^{3} - q^{4} + q^{5} - q^{6} - 2 q^{7} - 3 q^{8} + q^{9} + q^{10} - 4 q^{11} + q^{12} - 2 q^{14} - q^{15} - q^{16} + 2 q^{17} + q^{18} - 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.