Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-314638x-72130108\) | (homogenize, simplify) |
\(y^2z+xyz=x^3-314638xz^2-72130108z^3\) | (dehomogenize, simplify) |
\(y^2=x^3-407770875x-3364079006250\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(652, -326)$ | $0$ | $2$ |
Integral points
\( \left(652, -326\right) \)
Invariants
Conductor: | $N$ | = | \( 4650 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 31$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $\Delta$ | = | $-252467553375000000$ | = | $-1 \cdot 2^{6} \cdot 3^{7} \cdot 5^{9} \cdot 31^{4} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | $j$ | = | \( -\frac{1763710408147661}{129263387328} \) | = | $-1 \cdot 2^{-6} \cdot 3^{-7} \cdot 19^{3} \cdot 31^{-4} \cdot 6359^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0883776714749716778182552145$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.88129923714939639686768571458$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $Q$ | ≈ | $0.9966102850167543$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.886631711762168$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Mordell-Weil rank: | $r$ | = | $ 0$ | comment: Rank
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $\Omega$ | ≈ | $0.10036675126676938552559642167$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 168 $ = $ ( 2 \cdot 3 )\cdot7\cdot2\cdot2 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: | $ L(E,1)$ | ≈ | $4.2154035532043141920750497101 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
BSD formula
$\displaystyle 4.215403553 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.100367 \cdot 1.000000 \cdot 168}{2^2} \approx 4.215403553$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 94080 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$3$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 |
$5$ | $2$ | $III^{*}$ | additive | -1 | 2 | 9 | 0 |
$31$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120 = 2^{3} \cdot 3 \cdot 5 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 61 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 82 & 1 \\ 79 & 0 \end{array}\right),\left(\begin{array}{rr} 28 & 1 \\ 23 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 117 & 4 \\ 116 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 17 & 106 \\ 104 & 15 \end{array}\right)$.
The torsion field $K:=\Q(E[120])$ is a degree-$2949120$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 15 = 3 \cdot 5 \) |
$3$ | split multiplicative | $4$ | \( 775 = 5^{2} \cdot 31 \) |
$5$ | additive | $14$ | \( 186 = 2 \cdot 3 \cdot 31 \) |
$7$ | good | $2$ | \( 1550 = 2 \cdot 5^{2} \cdot 31 \) |
$31$ | nonsplit multiplicative | $32$ | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 4650.bs
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 4650.c2, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-15}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.2.24000.2 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.11664000000.8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.5184000000.10 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.2556233977921875.7 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 31 |
---|---|---|---|---|---|
Reduction type | split | split | add | ord | nonsplit |
$\lambda$-invariant(s) | 9 | 3 | - | 2 | 0 |
$\mu$-invariant(s) | 0 | 0 | - | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 11$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.