Show commands:
SageMath
E = EllipticCurve("bl1")
E.isogeny_class()
Elliptic curves in class 4650.bl
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
4650.bl1 | 4650bn2 | \([1, 0, 0, -936063, 325102617]\) | \(5805223604235668521/435937500000000\) | \(6811523437500000000\) | \([2]\) | \(129024\) | \(2.3591\) | |
4650.bl2 | 4650bn1 | \([1, 0, 0, 55937, 22542617]\) | \(1238798620042199/14760960000000\) | \(-230640000000000000\) | \([2]\) | \(64512\) | \(2.0125\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 4650.bl have rank \(0\).
Complex multiplication
The elliptic curves in class 4650.bl do not have complex multiplication.Modular form 4650.2.a.bl
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.