Show commands:
SageMath
E = EllipticCurve("bs1")
E.isogeny_class()
Elliptic curves in class 4650.bs
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
4650.bs1 | 4650bs2 | \([1, 0, 0, -5119638, -4459095108]\) | \(7598212583918732621/36771465672\) | \(71819268890625000\) | \([2]\) | \(188160\) | \(2.4350\) | |
4650.bs2 | 4650bs1 | \([1, 0, 0, -314638, -72130108]\) | \(-1763710408147661/129263387328\) | \(-252467553375000000\) | \([2]\) | \(94080\) | \(2.0884\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 4650.bs have rank \(0\).
Complex multiplication
The elliptic curves in class 4650.bs do not have complex multiplication.Modular form 4650.2.a.bs
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.