Properties

Label 46800.cy
Number of curves $4$
Conductor $46800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("cy1")
 
E.isogeny_class()
 

Elliptic curves in class 46800.cy

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
46800.cy1 46800k4 \([0, 0, 0, -187275, -31193750]\) \(62275269892/39\) \(454896000000\) \([2]\) \(131072\) \(1.5571\)  
46800.cy2 46800k2 \([0, 0, 0, -11775, -481250]\) \(61918288/1521\) \(4435236000000\) \([2, 2]\) \(65536\) \(1.2106\)  
46800.cy3 46800k1 \([0, 0, 0, -1650, 14875]\) \(2725888/1053\) \(191909250000\) \([2]\) \(32768\) \(0.86400\) \(\Gamma_0(N)\)-optimal
46800.cy4 46800k3 \([0, 0, 0, 1725, -1520750]\) \(48668/85683\) \(-999406512000000\) \([2]\) \(131072\) \(1.5571\)  

Rank

sage: E.rank()
 

The elliptic curves in class 46800.cy have rank \(0\).

Complex multiplication

The elliptic curves in class 46800.cy do not have complex multiplication.

Modular form 46800.2.a.cy

sage: E.q_eigenform(10)
 
\(q - q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.