Properties

Label 46800.fh
Number of curves $4$
Conductor $46800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("fh1")
 
E.isogeny_class()
 

Elliptic curves in class 46800.fh

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
46800.fh1 46800v4 \([0, 0, 0, -126360075, -546717437750]\) \(19129597231400697604/26325\) \(307054800000000\) \([2]\) \(2359296\) \(2.9461\)  
46800.fh2 46800v2 \([0, 0, 0, -7897575, -8542300250]\) \(18681746265374416/693005625\) \(2020804402500000000\) \([2, 2]\) \(1179648\) \(2.5996\)  
46800.fh3 46800v3 \([0, 0, 0, -7533075, -9366434750]\) \(-4053153720264484/903687890625\) \(-10540615556250000000000\) \([2]\) \(2359296\) \(2.9461\)  
46800.fh4 46800v1 \([0, 0, 0, -516450, -120436625]\) \(83587439220736/13990184325\) \(2549711093231250000\) \([2]\) \(589824\) \(2.2530\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 46800.fh have rank \(0\).

Complex multiplication

The elliptic curves in class 46800.fh do not have complex multiplication.

Modular form 46800.2.a.fh

sage: E.q_eigenform(10)
 
\(q + 4 q^{7} - q^{13} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.