Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 4680e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
4680.e1 | 4680e1 | \([0, 0, 0, -183, 938]\) | \(3631696/65\) | \(12130560\) | \([2]\) | \(768\) | \(0.15497\) | \(\Gamma_0(N)\)-optimal |
4680.e2 | 4680e2 | \([0, 0, 0, -3, 2702]\) | \(-4/4225\) | \(-3153945600\) | \([2]\) | \(1536\) | \(0.50154\) |
Rank
sage: E.rank()
The elliptic curves in class 4680e have rank \(1\).
Complex multiplication
The elliptic curves in class 4680e do not have complex multiplication.Modular form 4680.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.