Properties

Label 4680f
Number of curves $6$
Conductor $4680$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 4680f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4680.g5 4680f1 \([0, 0, 0, -83658, -10080007]\) \(-5551350318708736/550618236675\) \(-6422411112577200\) \([4]\) \(30720\) \(1.7737\) \(\Gamma_0(N)\)-optimal
4680.g4 4680f2 \([0, 0, 0, -1368903, -616458598]\) \(1520107298839022416/13013105625\) \(2428557824160000\) \([2, 2]\) \(61440\) \(2.1203\)  
4680.g1 4680f3 \([0, 0, 0, -21902403, -39453520498]\) \(1556580279686303289604/114075\) \(85156531200\) \([2]\) \(122880\) \(2.4669\)  
4680.g3 4680f4 \([0, 0, 0, -1399323, -587626522]\) \(405929061432816484/35083409765625\) \(26189625056400000000\) \([2, 2]\) \(122880\) \(2.4669\)  
4680.g2 4680f5 \([0, 0, 0, -4811043, 3391121342]\) \(8248670337458940482/1446075439453125\) \(2158979062500000000000\) \([2]\) \(245760\) \(2.8134\)  
4680.g6 4680f6 \([0, 0, 0, 1525677, -2721121522]\) \(263059523447441758/2294739983908125\) \(-3426028438054959360000\) \([2]\) \(245760\) \(2.8134\)  

Rank

sage: E.rank()
 

The elliptic curves in class 4680f have rank \(1\).

Complex multiplication

The elliptic curves in class 4680f do not have complex multiplication.

Modular form 4680.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{5} + 4 q^{11} + q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.