y2=x3−1906320x−1013034503
|
(homogenize, simplify) |
y2z=x3−1906320xz2−1013034503z3
|
(dehomogenize, simplify) |
y2=x3−1906320x−1013034503
|
(homogenize, minimize) |
sage: E = EllipticCurve([0, 0, 0, -1906320, -1013034503])
gp: E = ellinit([0, 0, 0, -1906320, -1013034503])
magma: E := EllipticCurve([0, 0, 0, -1906320, -1013034503]);
oscar: E = elliptic_curve([0, 0, 0, -1906320, -1013034503])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z⊕Z/2Z
magma: MordellWeilGroup(E);
P | h^(P) | Order |
(122304/25,40840033/125) | 7.5556959493201248071946856481 | ∞ |
(−793,0) | 0 | 2 |
(−793,0)
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor: |
N |
= |
468468 | = | 22⋅32⋅7⋅11⋅132 |
sage: E.conductor().factor()
|
Discriminant: |
Δ |
= |
35898899448524112 | = | 24⋅36⋅73⋅11⋅138 |
sage: E.discriminant().factor()
|
j-invariant: |
j |
= |
63763713608288256000 | = | 220⋅53⋅7−3⋅11−1⋅13−2⋅473 |
sage: E.j_invariant().factor()
|
Endomorphism ring: |
End(E) | = | Z |
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
magma: HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) | = | SU(2) |
Faltings height: |
hFaltings | ≈ | 2.2510797976507142106448151088 |
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
Stable Faltings height: |
hstable | ≈ | 0.18824991439924256044803806240 |
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
abc quality: |
Q | ≈ | 0.9588753537269991 |
|
Szpiro ratio: |
σm | ≈ | 4.211895472396854 |
|
Analytic rank: |
ran | = | 1
|
|
Mordell-Weil rank: |
r | = | 1
|
gp: [lower,upper] = ellrank(E)
|
Regulator: |
Reg(E/Q) | ≈ | 7.5556959493201248071946856481 |
G = E.gen \\ if available matdet(ellheightmatrix(E,G))
|
Real period: |
Ω | ≈ | 0.12848482123907458554096179819 |
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: |
∏pcp | = | 24
= 3⋅2⋅1⋅1⋅22
|
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: |
#E(Q)tor | = | 2 |
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: |
L′(E,1) | ≈ | 5.8247534603111771106438086123 |
r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: |
Шan |
≈ |
1
(rounded)
|
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
5.824753460≈L′(E,1)=#E(Q)tor2#Ш(E/Q)⋅ΩE⋅Reg(E/Q)⋅∏pcp≈221⋅0.128485⋅7.555696⋅24≈5.824753460
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
468468.2.a.y
q−q7−q11−6q17+4q19+O(q20)
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
*
The optimal curve in
each isogeny class has not been determined in all cases for
conductors over 400000.
The Manin constant is correct provided that this curve is optimal.
This elliptic curve is not semistable.
There
are 5 primes p
of bad reduction:
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ-adic Galois representation has maximal image
for all primes ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[7999, 12010, 7950, 11999], [10306, 3, 3405, 12004], [12001, 12, 12000, 13], [11, 2, 11962, 12003], [1, 0, 12, 1], [1, 6, 6, 37], [7654, 3, 2157, 12004], [7011, 11014, 1022, 5021], [1, 12, 0, 1], [11087, 12000, 6462, 11939]]
GL(2,Integers(12012)).subgroup(gens)
Gens := [[7999, 12010, 7950, 11999], [10306, 3, 3405, 12004], [12001, 12, 12000, 13], [11, 2, 11962, 12003], [1, 0, 12, 1], [1, 6, 6, 37], [7654, 3, 2157, 12004], [7011, 11014, 1022, 5021], [1, 12, 0, 1], [11087, 12000, 6462, 11939]];
sub<GL(2,Integers(12012))|Gens>;
The image H:=ρE(Gal(Q/Q)) of the adelic Galois representation has
level 12012=22⋅3⋅7⋅11⋅13, index 96, genus 1, and generators
(799979501201011999),(103063405312004),(12001120001213),(1111962212003),(11201),(16637),(76542157312004),(70111022110145021),(10121),(1108764621200011939).
The torsion field K:=Q(E[12012]) is a degree-33476463820800 Galois extension of Q with Gal(K/Q) isomorphic to the projection of H to GL2(Z/12012Z).
The table below list all primes ℓ for which the Serre invariants associated to the mod-ℓ Galois representation are exceptional.
ℓ |
Reduction type |
Serre weight |
Serre conductor |
2 |
additive |
2 |
117117=32⋅7⋅11⋅132 |
3 |
additive |
2 |
7436=22⋅11⋅132 |
7 |
nonsplit multiplicative |
8 |
66924=22⋅32⋅11⋅132 |
11 |
nonsplit multiplicative |
12 |
42588=22⋅32⋅7⋅132 |
13 |
additive |
98 |
2772=22⋅32⋅7⋅11 |
This curve has non-trivial cyclic isogenies of degree d for d=
2, 3 and 6.
Its isogeny class 468468.y
consists of 4 curves linked by isogenies of
degrees dividing 6.
The minimal quadratic twist of this elliptic curve is
4004.a2, its twist by −39.
No Iwasawa invariant data is available for this curve.
p-adic regulators
p-adic regulators are not yet computed for curves that are not Γ0-optimal.