Properties

Label 468468.y2
Conductor 468468468468
Discriminant 3.590×10163.590\times 10^{16}
j-invariant 13608288256000637637 \frac{13608288256000}{637637}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x31906320x1013034503y^2=x^3-1906320x-1013034503 Copy content Toggle raw display (homogenize, simplify)
y2z=x31906320xz21013034503z3y^2z=x^3-1906320xz^2-1013034503z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31906320x1013034503y^2=x^3-1906320x-1013034503 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -1906320, -1013034503])
 
gp: E = ellinit([0, 0, 0, -1906320, -1013034503])
 
magma: E := EllipticCurve([0, 0, 0, -1906320, -1013034503]);
 
oscar: E = elliptic_curve([0, 0, 0, -1906320, -1013034503])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(122304/25,40840033/125)(122304/25, 40840033/125)7.55569594932012480719468564817.5556959493201248071946856481\infty
(793,0)(-793, 0)0022

Integral points

(793,0) \left(-793, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  468468 468468  = 22327111322^{2} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 13^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  3589889944852411235898899448524112 = 243673111382^{4} \cdot 3^{6} \cdot 7^{3} \cdot 11 \cdot 13^{8}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  13608288256000637637 \frac{13608288256000}{637637}  = 22053731111324732^{20} \cdot 5^{3} \cdot 7^{-3} \cdot 11^{-1} \cdot 13^{-2} \cdot 47^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.25107979765071421064481510882.2510797976507142106448151088
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.188249914399242560448038062400.18824991439924256044803806240
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.95887535372699910.9588753537269991
Szpiro ratio: σm\sigma_{m} ≈ 4.2118954723968544.211895472396854

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 7.55569594932012480719468564817.5556959493201248071946856481
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.128484821239074585540961798190.12848482123907458554096179819
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 24 24  = 321122 3\cdot2\cdot1\cdot1\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 5.82475346031117711064380861235.8247534603111771106438086123
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

5.824753460L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1284857.55569624225.824753460\displaystyle 5.824753460 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.128485 \cdot 7.555696 \cdot 24}{2^2} \approx 5.824753460

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 468468.2.a.y

qq7q116q17+4q19+O(q20) q - q^{7} - q^{11} - 6 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 5515776
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: not computed* (one of 2 curves in this isogeny class which might be optimal)
Manin constant: 1 (conditional*)
comment: Manin constant
 
magma: ManinConstant(E);
 
* The optimal curve in each isogeny class has not been determined in all cases for conductors over 400000. The Manin constant is correct provided that this curve is optimal.

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 33 IVIV additive -1 2 4 0
33 22 I0I_0^{*} additive -1 2 6 0
77 11 I3I_{3} nonsplit multiplicative 1 1 3 3
1111 11 I1I_{1} nonsplit multiplicative 1 1 1 1
1313 44 I2I_{2}^{*} additive 1 2 8 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1
33 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[7999, 12010, 7950, 11999], [10306, 3, 3405, 12004], [12001, 12, 12000, 13], [11, 2, 11962, 12003], [1, 0, 12, 1], [1, 6, 6, 37], [7654, 3, 2157, 12004], [7011, 11014, 1022, 5021], [1, 12, 0, 1], [11087, 12000, 6462, 11939]]
 
GL(2,Integers(12012)).subgroup(gens)
 
Gens := [[7999, 12010, 7950, 11999], [10306, 3, 3405, 12004], [12001, 12, 12000, 13], [11, 2, 11962, 12003], [1, 0, 12, 1], [1, 6, 6, 37], [7654, 3, 2157, 12004], [7011, 11014, 1022, 5021], [1, 12, 0, 1], [11087, 12000, 6462, 11939]];
 
sub<GL(2,Integers(12012))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 12012=22371113 12012 = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 13 , index 9696, genus 11, and generators

(799912010795011999),(103063340512004),(12001121200013),(1121196212003),(10121),(16637),(76543215712004),(70111101410225021),(11201),(1108712000646211939)\left(\begin{array}{rr} 7999 & 12010 \\ 7950 & 11999 \end{array}\right),\left(\begin{array}{rr} 10306 & 3 \\ 3405 & 12004 \end{array}\right),\left(\begin{array}{rr} 12001 & 12 \\ 12000 & 13 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 11962 & 12003 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 7654 & 3 \\ 2157 & 12004 \end{array}\right),\left(\begin{array}{rr} 7011 & 11014 \\ 1022 & 5021 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 11087 & 12000 \\ 6462 & 11939 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[12012])K:=\Q(E[12012]) is a degree-3347646382080033476463820800 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/12012Z)\GL_2(\Z/12012\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 117117=32711132 117117 = 3^{2} \cdot 7 \cdot 11 \cdot 13^{2}
33 additive 22 7436=2211132 7436 = 2^{2} \cdot 11 \cdot 13^{2}
77 nonsplit multiplicative 88 66924=223211132 66924 = 2^{2} \cdot 3^{2} \cdot 11 \cdot 13^{2}
1111 nonsplit multiplicative 1212 42588=22327132 42588 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13^{2}
1313 additive 9898 2772=2232711 2772 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 11

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3 and 6.
Its isogeny class 468468.y consists of 4 curves linked by isogenies of degrees dividing 6.

Twists

The minimal quadratic twist of this elliptic curve is 4004.a2, its twist by 39-39.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.