Properties

Label 47040fa
Number of curves 44
Conductor 4704047040
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("fa1")
 
E.isogeny_class()
 

Elliptic curves in class 47040fa

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
47040.cv4 47040fa1 [0,1,0,180,9918][0, -1, 0, 180, -9918] 85184/562585184/5625 42353640000-42353640000 [2][2] 3686436864 0.718700.71870 Γ0(N)\Gamma_0(N)-optimal
47040.cv3 47040fa2 [0,1,0,5945,167943][0, -1, 0, -5945, -167943] 48228544/202548228544/2025 975827865600975827865600 [2,2][2, 2] 7372873728 1.06531.0653  
47040.cv2 47040fa3 [0,1,0,15745,539617][0, -1, 0, -15745, 539617] 111980168/32805111980168/32805 126467291381760126467291381760 [2][2] 147456147456 1.41181.4118  
47040.cv1 47040fa4 [0,1,0,94145,11087103][0, -1, 0, -94145, -11087103] 23937672968/4523937672968/45 173480509440173480509440 [2][2] 147456147456 1.41181.4118  

Rank

sage: E.rank()
 

The elliptic curves in class 47040fa have rank 00.

Complex multiplication

The elliptic curves in class 47040fa do not have complex multiplication.

Modular form 47040.2.a.fa

sage: E.q_eigenform(10)
 
qq3+q5+q92q13q15+6q17+O(q20)q - q^{3} + q^{5} + q^{9} - 2 q^{13} - q^{15} + 6 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.