E = EllipticCurve("fa1")
E.isogeny_class()
Elliptic curves in class 47040fa
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
47040.cv4 |
47040fa1 |
[0,−1,0,180,−9918] |
85184/5625 |
−42353640000 |
[2] |
36864 |
0.71870
|
Γ0(N)-optimal |
47040.cv3 |
47040fa2 |
[0,−1,0,−5945,−167943] |
48228544/2025 |
975827865600 |
[2,2] |
73728 |
1.0653
|
|
47040.cv2 |
47040fa3 |
[0,−1,0,−15745,539617] |
111980168/32805 |
126467291381760 |
[2] |
147456 |
1.4118
|
|
47040.cv1 |
47040fa4 |
[0,−1,0,−94145,−11087103] |
23937672968/45 |
173480509440 |
[2] |
147456 |
1.4118
|
|
The elliptic curves in class 47040fa have
rank 0.
The elliptic curves in class 47040fa do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.