Show commands:
SageMath
E = EllipticCurve("fa1")
E.isogeny_class()
Elliptic curves in class 47040fa
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
47040.cv4 | 47040fa1 | \([0, -1, 0, 180, -9918]\) | \(85184/5625\) | \(-42353640000\) | \([2]\) | \(36864\) | \(0.71870\) | \(\Gamma_0(N)\)-optimal |
47040.cv3 | 47040fa2 | \([0, -1, 0, -5945, -167943]\) | \(48228544/2025\) | \(975827865600\) | \([2, 2]\) | \(73728\) | \(1.0653\) | |
47040.cv2 | 47040fa3 | \([0, -1, 0, -15745, 539617]\) | \(111980168/32805\) | \(126467291381760\) | \([2]\) | \(147456\) | \(1.4118\) | |
47040.cv1 | 47040fa4 | \([0, -1, 0, -94145, -11087103]\) | \(23937672968/45\) | \(173480509440\) | \([2]\) | \(147456\) | \(1.4118\) |
Rank
sage: E.rank()
The elliptic curves in class 47040fa have rank \(0\).
Complex multiplication
The elliptic curves in class 47040fa do not have complex multiplication.Modular form 47040.2.a.fa
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.