Properties

Label 47040fa
Number of curves $4$
Conductor $47040$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("fa1")
 
E.isogeny_class()
 

Elliptic curves in class 47040fa

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
47040.cv4 47040fa1 \([0, -1, 0, 180, -9918]\) \(85184/5625\) \(-42353640000\) \([2]\) \(36864\) \(0.71870\) \(\Gamma_0(N)\)-optimal
47040.cv3 47040fa2 \([0, -1, 0, -5945, -167943]\) \(48228544/2025\) \(975827865600\) \([2, 2]\) \(73728\) \(1.0653\)  
47040.cv2 47040fa3 \([0, -1, 0, -15745, 539617]\) \(111980168/32805\) \(126467291381760\) \([2]\) \(147456\) \(1.4118\)  
47040.cv1 47040fa4 \([0, -1, 0, -94145, -11087103]\) \(23937672968/45\) \(173480509440\) \([2]\) \(147456\) \(1.4118\)  

Rank

sage: E.rank()
 

The elliptic curves in class 47040fa have rank \(0\).

Complex multiplication

The elliptic curves in class 47040fa do not have complex multiplication.

Modular form 47040.2.a.fa

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{9} - 2 q^{13} - q^{15} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.