Properties

Label 473280.ff3
Conductor 473280473280
Discriminant 1.672×1020-1.672\times 10^{20}
j-invariant 55254534707337841637814176525275 -\frac{55254534707337841}{637814176525275}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x2507841x+637356095y^2=x^3+x^2-507841x+637356095 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z507841xz2+637356095z3y^2z=x^3+x^2z-507841xz^2+637356095z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x341135148x+464755998672y^2=x^3-41135148x+464755998672 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, -507841, 637356095])
 
gp: E = ellinit([0, 1, 0, -507841, 637356095])
 
magma: E := EllipticCurve([0, 1, 0, -507841, 637356095]);
 
oscar: E = elliptic_curve([0, 1, 0, -507841, 637356095])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1055,0)(-1055, 0)0022

Integral points

(1055,0) \left(-1055, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  473280 473280  = 263517292^{6} \cdot 3 \cdot 5 \cdot 17 \cdot 29
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  167199159491041689600-167199159491041689600 = 121835217298-1 \cdot 2^{18} \cdot 3 \cdot 5^{2} \cdot 17 \cdot 29^{8}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  55254534707337841637814176525275 -\frac{55254534707337841}{637814176525275}  = 131521712983808813-1 \cdot 3^{-1} \cdot 5^{-2} \cdot 17^{-1} \cdot 29^{-8} \cdot 380881^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.56240000484531448833648731892.5624000048453144883364873189
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.52267923400539652421063913671.5226792340053965242106391367
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.96171881944497210.9617188194449721
Szpiro ratio: σm\sigma_{m} ≈ 4.1377151639913484.137715163991348

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.154116974251636052041517184750.15411697425163605204151718475
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 21212 2\cdot1\cdot2\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 4.93174317605235366532854991194.9317431760523536653285499119
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  1616 = 424^2    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.931743176L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor2160.1541171.0000008224.931743176\displaystyle 4.931743176 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{16 \cdot 0.154117 \cdot 1.000000 \cdot 8}{2^2} \approx 4.931743176

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 473280.2.a.ff

q+q3q5+q9+4q11+2q13q15+q17+4q19+O(q20) q + q^{3} - q^{5} + q^{9} + 4 q^{11} + 2 q^{13} - q^{15} + q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 14680064
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1 (conditional*)
comment: Manin constant
 
magma: ManinConstant(E);
 
* The Manin constant is correct provided that curve 473280.ff5 is optimal.

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I8I_{8}^{*} additive -1 6 18 0
33 11 I1I_{1} split multiplicative -1 1 1 1
55 22 I2I_{2} nonsplit multiplicative 1 1 2 2
1717 11 I1I_{1} split multiplicative -1 1 1 1
2929 22 I8I_{8} nonsplit multiplicative 1 1 8 8

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.24.0.97

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 16, 0, 1], [47341, 16, 23408, 118005], [1, 0, 16, 1], [118307, 118304, 29836, 29895], [65281, 16, 48968, 129], [48736, 5, 62595, 118306], [39448, 1, 78959, 10], [5, 4, 118316, 118317], [15, 2, 118222, 118307], [14777, 118304, 44626, 29895], [118305, 16, 118304, 17]]
 
GL(2,Integers(118320)).subgroup(gens)
 
Gens := [[1, 16, 0, 1], [47341, 16, 23408, 118005], [1, 0, 16, 1], [118307, 118304, 29836, 29895], [65281, 16, 48968, 129], [48736, 5, 62595, 118306], [39448, 1, 78959, 10], [5, 4, 118316, 118317], [15, 2, 118222, 118307], [14777, 118304, 44626, 29895], [118305, 16, 118304, 17]];
 
sub<GL(2,Integers(118320))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 118320=24351729 118320 = 2^{4} \cdot 3 \cdot 5 \cdot 17 \cdot 29 , index 192192, genus 11, and generators

(11601),(473411623408118005),(10161),(1183071183042983629895),(652811648968129),(48736562595118306),(3944817895910),(54118316118317),(152118222118307),(147771183044462629895),(1183051611830417)\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 47341 & 16 \\ 23408 & 118005 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 118307 & 118304 \\ 29836 & 29895 \end{array}\right),\left(\begin{array}{rr} 65281 & 16 \\ 48968 & 129 \end{array}\right),\left(\begin{array}{rr} 48736 & 5 \\ 62595 & 118306 \end{array}\right),\left(\begin{array}{rr} 39448 & 1 \\ 78959 & 10 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 118316 & 118317 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 118222 & 118307 \end{array}\right),\left(\begin{array}{rr} 14777 & 118304 \\ 44626 & 29895 \end{array}\right),\left(\begin{array}{rr} 118305 & 16 \\ 118304 & 17 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[118320])K:=\Q(E[118320]) is a degree-157575666047385600157575666047385600 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/118320Z)\GL_2(\Z/118320\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 51=317 51 = 3 \cdot 17
33 split multiplicative 44 157760=2651729 157760 = 2^{6} \cdot 5 \cdot 17 \cdot 29
55 nonsplit multiplicative 66 94656=2631729 94656 = 2^{6} \cdot 3 \cdot 17 \cdot 29
1717 split multiplicative 1818 27840=263529 27840 = 2^{6} \cdot 3 \cdot 5 \cdot 29
2929 nonsplit multiplicative 3030 16320=263517 16320 = 2^{6} \cdot 3 \cdot 5 \cdot 17

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4 and 8.
Its isogeny class 473280.ff consists of 6 curves linked by isogenies of degrees dividing 8.

Twists

The minimal quadratic twist of this elliptic curve is 7395.b3, its twist by 8-8.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.