y2=x3+x2−507841x+637356095
|
(homogenize, simplify) |
y2z=x3+x2z−507841xz2+637356095z3
|
(dehomogenize, simplify) |
y2=x3−41135148x+464755998672
|
(homogenize, minimize) |
sage: E = EllipticCurve([0, 1, 0, -507841, 637356095])
gp: E = ellinit([0, 1, 0, -507841, 637356095])
magma: E := EllipticCurve([0, 1, 0, -507841, 637356095]);
oscar: E = elliptic_curve([0, 1, 0, -507841, 637356095])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z/2Z
magma: MordellWeilGroup(E);
(−1055,0)
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor: |
N |
= |
473280 | = | 26⋅3⋅5⋅17⋅29 |
sage: E.conductor().factor()
|
Discriminant: |
Δ |
= |
−167199159491041689600 | = | −1⋅218⋅3⋅52⋅17⋅298 |
sage: E.discriminant().factor()
|
j-invariant: |
j |
= |
−63781417652527555254534707337841 | = | −1⋅3−1⋅5−2⋅17−1⋅29−8⋅3808813 |
sage: E.j_invariant().factor()
|
Endomorphism ring: |
End(E) | = | Z |
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
magma: HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) | = | SU(2) |
Faltings height: |
hFaltings | ≈ | 2.5624000048453144883364873189 |
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
Stable Faltings height: |
hstable | ≈ | 1.5226792340053965242106391367 |
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
abc quality: |
Q | ≈ | 0.9617188194449721 |
|
Szpiro ratio: |
σm | ≈ | 4.137715163991348 |
|
Analytic rank: |
ran | = | 0
|
|
Mordell-Weil rank: |
r | = | 0
|
gp: [lower,upper] = ellrank(E)
|
Regulator: |
Reg(E/Q) | = | 1 |
G = E.gen \\ if available matdet(ellheightmatrix(E,G))
|
Real period: |
Ω | ≈ | 0.15411697425163605204151718475 |
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: |
∏pcp | = | 8
= 2⋅1⋅2⋅1⋅2
|
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: |
#E(Q)tor | = | 2 |
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: |
L(E,1) | ≈ | 4.9317431760523536653285499119 |
r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: |
Шan |
= |
16 = 42
(exact)
|
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
4.931743176≈L(E,1)=#E(Q)tor2#Ш(E/Q)⋅ΩE⋅Reg(E/Q)⋅∏pcp≈2216⋅0.154117⋅1.000000⋅8≈4.931743176
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
473280.2.a.ff
q+q3−q5+q9+4q11+2q13−q15+q17+4q19+O(q20)
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
*
The Manin constant is correct provided that curve 473280.ff5 is optimal.
This elliptic curve is not semistable.
There
are 5 primes p
of bad reduction:
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ-adic Galois representation has maximal image
for all primes ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[1, 16, 0, 1], [47341, 16, 23408, 118005], [1, 0, 16, 1], [118307, 118304, 29836, 29895], [65281, 16, 48968, 129], [48736, 5, 62595, 118306], [39448, 1, 78959, 10], [5, 4, 118316, 118317], [15, 2, 118222, 118307], [14777, 118304, 44626, 29895], [118305, 16, 118304, 17]]
GL(2,Integers(118320)).subgroup(gens)
Gens := [[1, 16, 0, 1], [47341, 16, 23408, 118005], [1, 0, 16, 1], [118307, 118304, 29836, 29895], [65281, 16, 48968, 129], [48736, 5, 62595, 118306], [39448, 1, 78959, 10], [5, 4, 118316, 118317], [15, 2, 118222, 118307], [14777, 118304, 44626, 29895], [118305, 16, 118304, 17]];
sub<GL(2,Integers(118320))|Gens>;
The image H:=ρE(Gal(Q/Q)) of the adelic Galois representation has
level 118320=24⋅3⋅5⋅17⋅29, index 192, genus 1, and generators
(10161),(473412340816118005),(11601),(1183072983611830429895),(652814896816129),(48736625955118306),(3944878959110),(51183164118317),(151182222118307),(147774462611830429895),(1183051183041617).
The torsion field K:=Q(E[118320]) is a degree-157575666047385600 Galois extension of Q with Gal(K/Q) isomorphic to the projection of H to GL2(Z/118320Z).
The table below list all primes ℓ for which the Serre invariants associated to the mod-ℓ Galois representation are exceptional.
ℓ |
Reduction type |
Serre weight |
Serre conductor |
2 |
additive |
2 |
51=3⋅17 |
3 |
split multiplicative |
4 |
157760=26⋅5⋅17⋅29 |
5 |
nonsplit multiplicative |
6 |
94656=26⋅3⋅17⋅29 |
17 |
split multiplicative |
18 |
27840=26⋅3⋅5⋅29 |
29 |
nonsplit multiplicative |
30 |
16320=26⋅3⋅5⋅17 |
This curve has non-trivial cyclic isogenies of degree d for d=
2, 4 and 8.
Its isogeny class 473280.ff
consists of 6 curves linked by isogenies of
degrees dividing 8.
The minimal quadratic twist of this elliptic curve is
7395.b3, its twist by −8.
No Iwasawa invariant data is available for this curve.
p-adic regulators
All p-adic regulators are identically 1 since the rank is 0.