Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-7749203x-2376710798\)
|
(homogenize, simplify) |
\(y^2z=x^3-7749203xz^2-2376710798z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-7749203x-2376710798\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-777, 56350)$ | $4.8509211392472455147200048368$ | $\infty$ |
$(2926, 0)$ | $0$ | $2$ |
Integral points
\((-777,\pm 56350)\), \( \left(2926, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 474320 \) | = | $2^{4} \cdot 5 \cdot 7^{2} \cdot 11^{2}$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $\Delta$ | = | $27341548119272119040000$ | = | $2^{11} \cdot 5^{4} \cdot 7^{7} \cdot 11^{10} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | $j$ | = | \( \frac{120564797922}{64054375} \) | = | $2 \cdot 3^{3} \cdot 5^{-4} \cdot 7^{-1} \cdot 11^{-4} \cdot 1307^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9966397716481463224773358614$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.18935214520802119759455825603$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $Q$ | ≈ | $0.9447685706248564$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.529804656223033$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Mordell-Weil rank: | $r$ | = | $ 1$ | comment: Rank
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.8509211392472455147200048368$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $\Omega$ | ≈ | $0.096115764248383350270507006227$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot2\cdot2^{2}\cdot2^{2} $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: | $ L'(E,1)$ | ≈ | $7.4599998817181989121142717601 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
BSD formula
$\displaystyle 7.459999882 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.096116 \cdot 4.850921 \cdot 64}{2^2} \approx 7.459999882$
Modular invariants
Modular form 474320.2.a.eg
For more coefficients, see the Downloads section to the right.
Modular degree: | 23592960 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) | comment: Manin constant
magma: ManinConstant(E);
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{3}^{*}$ | additive | 1 | 4 | 11 | 0 |
$5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$7$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$11$ | $4$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3080 = 2^{3} \cdot 5 \cdot 7 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 2696 & 1163 \\ 1929 & 1958 \end{array}\right),\left(\begin{array}{rr} 1152 & 2687 \\ 1127 & 1080 \end{array}\right),\left(\begin{array}{rr} 617 & 8 \\ 2468 & 33 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 872 & 3077 \\ 1315 & 3078 \end{array}\right),\left(\begin{array}{rr} 3073 & 8 \\ 3072 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 3074 & 3075 \end{array}\right),\left(\begin{array}{rr} 559 & 3072 \\ 2236 & 3047 \end{array}\right)$.
The torsion field $K:=\Q(E[3080])$ is a degree-$408748032000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3080\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 5929 = 7^{2} \cdot 11^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 94864 = 2^{4} \cdot 7^{2} \cdot 11^{2} \) |
$7$ | additive | $32$ | \( 9680 = 2^{4} \cdot 5 \cdot 11^{2} \) |
$11$ | additive | $72$ | \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 474320.eg
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 3080.d2, its twist by $-308$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.