Properties

Label 474320.eg2
Conductor 474320474320
Discriminant 2.734×10222.734\times 10^{22}
j-invariant 12056479792264054375 \frac{120564797922}{64054375}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x37749203x2376710798y^2=x^3-7749203x-2376710798 Copy content Toggle raw display (homogenize, simplify)
y2z=x37749203xz22376710798z3y^2z=x^3-7749203xz^2-2376710798z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x37749203x2376710798y^2=x^3-7749203x-2376710798 Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([0, 0, 0, -7749203, -2376710798])
 
Copy content gp:E = ellinit([0, 0, 0, -7749203, -2376710798])
 
Copy content magma:E := EllipticCurve([0, 0, 0, -7749203, -2376710798]);
 
Copy content oscar:E = elliptic_curve([0, 0, 0, -7749203, -2376710798])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(777,56350)(-777, 56350)4.85092113924724551472000483684.8509211392472455147200048368\infty
(2926,0)(2926, 0)0022

Integral points

(777,±56350)(-777,\pm 56350), (2926,0) \left(2926, 0\right) Copy content Toggle raw display

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: NN  =  474320 474320  = 245721122^{4} \cdot 5 \cdot 7^{2} \cdot 11^{2}
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: Δ\Delta  =  2734154811927211904000027341548119272119040000 = 211547711102^{11} \cdot 5^{4} \cdot 7^{7} \cdot 11^{10}
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: jj  =  12056479792264054375 \frac{120564797922}{64054375}  = 2335471114130732 \cdot 3^{3} \cdot 5^{-4} \cdot 7^{-1} \cdot 11^{-4} \cdot 1307^{3}
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.99663977164814632247733586142.9966397716481463224773358614
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.189352145208021197594558256030.18935214520802119759455825603
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.94476857062485640.9447685706248564
Szpiro ratio: σm\sigma_{m} ≈ 4.5298046562230334.529804656223033

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 4.85092113924724551472000483684.8509211392472455147200048368
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: Ω\Omega ≈ 0.0961157642483833502705070062270.096115764248383350270507006227
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 64 64  = 222222 2\cdot2\cdot2^{2}\cdot2^{2}
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 7.45999988171819891211427176017.4599998817181989121142717601
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

7.459999882L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.0961164.85092164227.459999882\begin{aligned} 7.459999882 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.096116 \cdot 4.850921 \cdot 64}{2^2} \\ & \approx 7.459999882\end{aligned}

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([0, 0, 0, -7749203, -2376710798]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([0, 0, 0, -7749203, -2376710798]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 474320.2.a.eg

qq53q92q13+2q17+O(q20) q - q^{5} - 3 q^{9} - 2 q^{13} + 2 q^{17} + O(q^{20}) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 23592960
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: not computed* (one of 3 curves in this isogeny class which might be optimal)
Manin constant: 1 (conditional*)
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 
* The optimal curve in each isogeny class has not been determined in all cases for conductors over 400000. The Manin constant is correct provided that curve 474320.eg4 is optimal.

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I3I_{3}^{*} additive 1 4 11 0
55 22 I4I_{4} nonsplit multiplicative 1 1 4 4
77 44 I1I_{1}^{*} additive -1 2 7 1
1111 44 I4I_{4}^{*} additive -1 2 10 4

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 4.6.0.1

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[2696, 1163, 1929, 1958], [1152, 2687, 1127, 1080], [617, 8, 2468, 33], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [872, 3077, 1315, 3078], [3073, 8, 3072, 9], [7, 6, 3074, 3075], [559, 3072, 2236, 3047]] GL(2,Integers(3080)).subgroup(gens)
 
Copy content magma:Gens := [[2696, 1163, 1929, 1958], [1152, 2687, 1127, 1080], [617, 8, 2468, 33], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [872, 3077, 1315, 3078], [3073, 8, 3072, 9], [7, 6, 3074, 3075], [559, 3072, 2236, 3047]]; sub<GL(2,Integers(3080))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 3080=235711 3080 = 2^{3} \cdot 5 \cdot 7 \cdot 11 , index 4848, genus 00, and generators

(2696116319291958),(1152268711271080),(6178246833),(1081),(1801),(14417),(872307713153078),(3073830729),(7630743075),(559307222363047)\left(\begin{array}{rr} 2696 & 1163 \\ 1929 & 1958 \end{array}\right),\left(\begin{array}{rr} 1152 & 2687 \\ 1127 & 1080 \end{array}\right),\left(\begin{array}{rr} 617 & 8 \\ 2468 & 33 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 872 & 3077 \\ 1315 & 3078 \end{array}\right),\left(\begin{array}{rr} 3073 & 8 \\ 3072 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 3074 & 3075 \end{array}\right),\left(\begin{array}{rr} 559 & 3072 \\ 2236 & 3047 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[3080])K:=\Q(E[3080]) is a degree-408748032000408748032000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/3080Z)\GL_2(\Z/3080\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 5929=72112 5929 = 7^{2} \cdot 11^{2}
55 nonsplit multiplicative 66 94864=2472112 94864 = 2^{4} \cdot 7^{2} \cdot 11^{2}
77 additive 3232 9680=245112 9680 = 2^{4} \cdot 5 \cdot 11^{2}
1111 additive 7272 3920=24572 3920 = 2^{4} \cdot 5 \cdot 7^{2}

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 474320.eg consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 3080.d2, its twist by 308-308.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.