E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 47753f
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
47753.i4 |
47753f1 |
[1,−1,0,−1931,14440] |
35937/17 |
376794139193 |
[2] |
37440 |
0.91536
|
Γ0(N)-optimal |
47753.i2 |
47753f2 |
[1,−1,0,−15976,−763653] |
20346417/289 |
6405500366281 |
[2,2] |
74880 |
1.2619
|
|
47753.i3 |
47753f3 |
[1,−1,0,−1931,−2069838] |
−35937/83521 |
−1851189605855209 |
[2] |
149760 |
1.6085
|
|
47753.i1 |
47753f4 |
[1,−1,0,−254741,−49423960] |
82483294977/17 |
376794139193 |
[2] |
149760 |
1.6085
|
|
The elliptic curves in class 47753f have
rank 0.
The elliptic curves in class 47753f do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.