Properties

Label 47753f
Number of curves 44
Conductor 4775347753
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 47753f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
47753.i4 47753f1 [1,1,0,1931,14440][1, -1, 0, -1931, 14440] 35937/1735937/17 376794139193376794139193 [2][2] 3744037440 0.915360.91536 Γ0(N)\Gamma_0(N)-optimal
47753.i2 47753f2 [1,1,0,15976,763653][1, -1, 0, -15976, -763653] 20346417/28920346417/289 64055003662816405500366281 [2,2][2, 2] 7488074880 1.26191.2619  
47753.i3 47753f3 [1,1,0,1931,2069838][1, -1, 0, -1931, -2069838] 35937/83521-35937/83521 1851189605855209-1851189605855209 [2][2] 149760149760 1.60851.6085  
47753.i1 47753f4 [1,1,0,254741,49423960][1, -1, 0, -254741, -49423960] 82483294977/1782483294977/17 376794139193376794139193 [2][2] 149760149760 1.60851.6085  

Rank

sage: E.rank()
 

The elliptic curves in class 47753f have rank 00.

Complex multiplication

The elliptic curves in class 47753f do not have complex multiplication.

Modular form 47753.2.a.f

sage: E.q_eigenform(10)
 
q+q2q4+2q5+4q73q83q9+2q102q13+4q14q16+q173q18+4q19+O(q20)q + q^{2} - q^{4} + 2 q^{5} + 4 q^{7} - 3 q^{8} - 3 q^{9} + 2 q^{10} - 2 q^{13} + 4 q^{14} - q^{16} + q^{17} - 3 q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.