Properties

Label 478800cc2
Conductor 478800478800
Discriminant 1.173×10181.173\times 10^{18}
j-invariant 1367595682000402300927 \frac{1367595682000}{402300927}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3330375x51250750y^2=x^3-330375x-51250750 Copy content Toggle raw display (homogenize, simplify)
y2z=x3330375xz251250750z3y^2z=x^3-330375xz^2-51250750z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3330375x51250750y^2=x^3-330375x-51250750 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -330375, -51250750])
 
gp: E = ellinit([0, 0, 0, -330375, -51250750])
 
magma: E := EllipticCurve([0, 0, 0, -330375, -51250750]);
 
oscar: E = elliptic_curve([0, 0, 0, -330375, -51250750])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(470,450)(-470, 450)3.65117356239924328595096594563.6511735623992432859509659456\infty
(170,0)(-170, 0)0022

Integral points

(470,±450)(-470,\pm 450), (170,0) \left(-170, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  478800 478800  = 2432527192^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 19
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  11731095031320000001173109503132000000 = 283856731942^{8} \cdot 3^{8} \cdot 5^{6} \cdot 7^{3} \cdot 19^{4}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  1367595682000402300927 \frac{1367595682000}{402300927}  = 2432537319488132^{4} \cdot 3^{-2} \cdot 5^{3} \cdot 7^{-3} \cdot 19^{-4} \cdot 881^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.17300700353274289005785255462.1730070035327428900578525546
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.356883782608340984115028855220.35688378260834098411502885522
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.92191819846637560.9219181984663756
Szpiro ratio: σm\sigma_{m} ≈ 3.80284490553464273.8028449055346427

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 3.65117356239924328595096594563.6511735623992432859509659456
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.203635218006002755291276976620.20363521800600275529127697662
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 16 16  = 122212 1\cdot2^{2}\cdot2\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.97403009742769444396289581462.9740300974276944439628958146
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.974030097L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2036353.65117416222.974030097\displaystyle 2.974030097 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.203635 \cdot 3.651174 \cdot 16}{2^2} \approx 2.974030097

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 478800.2.a.cc

qq72q116q138q17q19+O(q20) q - q^{7} - 2 q^{11} - 6 q^{13} - 8 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 7962624
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: not computed* (one of 2 curves in this isogeny class which might be optimal)
Manin constant: 1 (conditional*)
comment: Manin constant
 
magma: ManinConstant(E);
 
* The optimal curve in each isogeny class has not been determined in all cases for conductors over 400000. The Manin constant is correct provided that curve 478800cc1 is optimal.

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I0I_0^{*} additive -1 4 8 0
33 44 I2I_{2}^{*} additive -1 2 8 2
55 22 I0I_0^{*} additive 1 2 6 0
77 11 I3I_{3} nonsplit multiplicative 1 1 3 3
1919 22 I4I_{4} nonsplit multiplicative 1 1 4 4

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[64, 25, 21, 64], [62, 1, 11, 0], [1, 4, 0, 1], [29, 4, 58, 9], [1, 0, 4, 1], [81, 4, 80, 5], [3, 4, 8, 11], [1, 2, 2, 5]]
 
GL(2,Integers(84)).subgroup(gens)
 
Gens := [[64, 25, 21, 64], [62, 1, 11, 0], [1, 4, 0, 1], [29, 4, 58, 9], [1, 0, 4, 1], [81, 4, 80, 5], [3, 4, 8, 11], [1, 2, 2, 5]];
 
sub<GL(2,Integers(84))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 84=2237 84 = 2^{2} \cdot 3 \cdot 7 , index 1212, genus 00, and generators

(64252164),(621110),(1401),(294589),(1041),(814805),(34811),(1225)\left(\begin{array}{rr} 64 & 25 \\ 21 & 64 \end{array}\right),\left(\begin{array}{rr} 62 & 1 \\ 11 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 29 & 4 \\ 58 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 81 & 4 \\ 80 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[84])K:=\Q(E[84]) is a degree-774144774144 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/84Z)\GL_2(\Z/84\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 1575=32527 1575 = 3^{2} \cdot 5^{2} \cdot 7
33 additive 88 7600=245219 7600 = 2^{4} \cdot 5^{2} \cdot 19
55 additive 1414 19152=2432719 19152 = 2^{4} \cdot 3^{2} \cdot 7 \cdot 19
77 nonsplit multiplicative 88 68400=24325219 68400 = 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19
1919 nonsplit multiplicative 2020 25200=2432527 25200 = 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 478800cc consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 1596b2, its twist by 6060.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.