Properties

Label 4800.cq
Number of curves 88
Conductor 48004800
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("cq1")
 
E.isogeny_class()
 

Elliptic curves in class 4800.cq

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4800.cq1 4800w7 [0,1,0,8533633,9597935137][0, 1, 0, -8533633, -9597935137] 16778985534208729/8100016778985534208729/81000 331776000000000331776000000000 [2][2] 110592110592 2.40862.4086  
4800.cq2 4800w8 [0,1,0,725633,32623137][0, 1, 0, -725633, -32623137] 10316097499609/585937500010316097499609/5859375000 2400000000000000000024000000000000000000 [2][2] 110592110592 2.40862.4086  
4800.cq3 4800w6 [0,1,0,533633,149935137][0, 1, 0, -533633, -149935137] 4102915888729/90000004102915888729/9000000 3686400000000000036864000000000000 [2,2][2, 2] 5529655296 2.06202.0620  
4800.cq4 4800w5 [0,1,0,461633,120568863][0, 1, 0, -461633, 120568863] 2656166199049/337502656166199049/33750 138240000000000138240000000000 [2][2] 3686436864 1.85931.8593  
4800.cq5 4800w4 [0,1,0,109633,12071137][0, 1, 0, -109633, -12071137] 35578826569/531441035578826569/5314410 2176782336000000021767823360000000 [2][2] 3686436864 1.85931.8593  
4800.cq6 4800w2 [0,1,0,29633,1768863][0, 1, 0, -29633, 1768863] 702595369/72900702595369/72900 298598400000000298598400000000 [2,2][2, 2] 1843218432 1.51271.5127  
4800.cq7 4800w3 [0,1,0,21633,4015137][0, 1, 0, -21633, -4015137] 273359449/1536000-273359449/1536000 6291456000000000-6291456000000000 [2][2] 2764827648 1.71551.7155  
4800.cq8 4800w1 [0,1,0,2367,136863][0, 1, 0, 2367, 136863] 357911/2160357911/2160 8847360000000-8847360000000 [2][2] 92169216 1.16621.1662 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4800.cq have rank 00.

Complex multiplication

The elliptic curves in class 4800.cq do not have complex multiplication.

Modular form 4800.2.a.cq

sage: E.q_eigenform(10)
 
q+q3+4q7+q9+2q136q17+4q19+O(q20)q + q^{3} + 4 q^{7} + q^{9} + 2 q^{13} - 6 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1421236412412312641222166326123614212431264121246632216244212126131212644231)\left(\begin{array}{rrrrrrrr} 1 & 4 & 2 & 12 & 3 & 6 & 4 & 12 \\ 4 & 1 & 2 & 3 & 12 & 6 & 4 & 12 \\ 2 & 2 & 1 & 6 & 6 & 3 & 2 & 6 \\ 12 & 3 & 6 & 1 & 4 & 2 & 12 & 4 \\ 3 & 12 & 6 & 4 & 1 & 2 & 12 & 4 \\ 6 & 6 & 3 & 2 & 2 & 1 & 6 & 2 \\ 4 & 4 & 2 & 12 & 12 & 6 & 1 & 3 \\ 12 & 12 & 6 & 4 & 4 & 2 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.