Properties

Label 483.a
Number of curves 11
Conductor 483483
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 483.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
483.a1 483b1 [0,1,1,2,1][0, 1, 1, 2, 1] 512000/483512000/483 483-483 [][] 2020 0.79783-0.79783 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 483.a1 has rank 00.

Complex multiplication

The elliptic curves in class 483.a do not have complex multiplication.

Modular form 483.2.a.a

sage: E.q_eigenform(10)
 
q+2q2+q3+2q4+2q6+q7+q9+q11+2q12+2q13+2q144q16+4q17+2q183q19+O(q20)q + 2 q^{2} + q^{3} + 2 q^{4} + 2 q^{6} + q^{7} + q^{9} + q^{11} + 2 q^{12} + 2 q^{13} + 2 q^{14} - 4 q^{16} + 4 q^{17} + 2 q^{18} - 3 q^{19} + O(q^{20}) Copy content Toggle raw display