Properties

Label 483.a
Number of curves $1$
Conductor $483$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 483.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
483.a1 483b1 \([0, 1, 1, 2, 1]\) \(512000/483\) \(-483\) \([]\) \(20\) \(-0.79783\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 483.a1 has rank \(0\).

Complex multiplication

The elliptic curves in class 483.a do not have complex multiplication.

Modular form 483.2.a.a

sage: E.q_eigenform(10)
 
\(q + 2 q^{2} + q^{3} + 2 q^{4} + 2 q^{6} + q^{7} + q^{9} + q^{11} + 2 q^{12} + 2 q^{13} + 2 q^{14} - 4 q^{16} + 4 q^{17} + 2 q^{18} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display