Properties

Label 485184q
Number of curves 44
Conductor 485184485184
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("q1")
 
E.isogeny_class()
 

Elliptic curves in class 485184q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
485184.q3 485184q1 [0,1,0,1346289,600797967][0, -1, 0, -1346289, -600797967] 350104249168/2793350104249168/2793 21528436020510722152843602051072 [2][2] 73728007372800 2.11422.1142 Γ0(N)\Gamma_0(N)-optimal*
485184.q2 485184q2 [0,1,0,1375169,573644991][0, -1, 0, -1375169, -573644991] 93280467172/780084993280467172/7800849 2405156872211457638424051568722114576384 [2,2][2, 2] 1474560014745600 2.46082.4608 Γ0(N)\Gamma_0(N)-optimal*
485184.q1 485184q3 [0,1,0,4667489,3222399969][0, -1, 0, -4667489, 3222399969] 1823652903746/3285936571823652903746/328593657 20262391755016525578242026239175501652557824 [2][2] 2949120029491200 2.80742.8074 Γ0(N)\Gamma_0(N)-optimal*
485184.q4 485184q4 [0,1,0,1455071,2632361567][0, -1, 0, 1455071, -2632361567] 55251546334/51724404955251546334/517244049 3189532521557153415168-3189532521557153415168 [2][2] 2949120029491200 2.80742.8074  
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 3 curves highlighted, and conditionally curve 485184q1.

Rank

sage: E.rank()
 

The elliptic curves in class 485184q have rank 00.

Complex multiplication

The elliptic curves in class 485184q do not have complex multiplication.

Modular form 485184.2.a.q

sage: E.q_eigenform(10)
 
qq32q5q7+q9+4q116q13+2q15+2q17+O(q20)q - q^{3} - 2 q^{5} - q^{7} + q^{9} + 4 q^{11} - 6 q^{13} + 2 q^{15} + 2 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.