E = EllipticCurve("q1")
E.isogeny_class()
Elliptic curves in class 485184q
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
485184.q3 |
485184q1 |
[0,−1,0,−1346289,−600797967] |
350104249168/2793 |
2152843602051072 |
[2] |
7372800 |
2.1142
|
Γ0(N)-optimal* |
485184.q2 |
485184q2 |
[0,−1,0,−1375169,−573644991] |
93280467172/7800849 |
24051568722114576384 |
[2,2] |
14745600 |
2.4608
|
Γ0(N)-optimal* |
485184.q1 |
485184q3 |
[0,−1,0,−4667489,3222399969] |
1823652903746/328593657 |
2026239175501652557824 |
[2] |
29491200 |
2.8074
|
Γ0(N)-optimal* |
485184.q4 |
485184q4 |
[0,−1,0,1455071,−2632361567] |
55251546334/517244049 |
−3189532521557153415168 |
[2] |
29491200 |
2.8074
|
|
*optimality has not been
determined rigorously for conductors over 400000. In
this case the optimal curve is certainly one of the 3 curves highlighted, and conditionally
curve 485184q1.
The elliptic curves in class 485184q have
rank 0.
The elliptic curves in class 485184q do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.