Properties

Label 4851n2
Conductor 48514851
Discriminant 1.343×1016-1.343\times 10^{16}
j-invariant 13278380032156590819 -\frac{13278380032}{156590819}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x321756x+5710864y^2+y=x^3-21756x+5710864 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x321756xz2+5710864z3y^2z+yz^2=x^3-21756xz^2+5710864z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3348096x+365495312y^2=x^3-348096x+365495312 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 1, -21756, 5710864])
 
gp: E = ellinit([0, 0, 1, -21756, 5710864])
 
magma: E := EllipticCurve([0, 0, 1, -21756, 5710864]);
 
oscar: E = elliptic_curve([0, 0, 1, -21756, 5710864])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  4851 4851  = 3272113^{2} \cdot 7^{2} \cdot 11
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  13430187129843099-13430187129843099 = 136712113-1 \cdot 3^{6} \cdot 7^{12} \cdot 11^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  13278380032156590819 -\frac{13278380032}{156590819}  = 121876113373-1 \cdot 2^{18} \cdot 7^{-6} \cdot 11^{-3} \cdot 37^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.77656769381036220747284055541.7765676938103622074728405554
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.254306474948650709222541565220.25430647494865070922254156522
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.06521683961209131.0652168396120913
Szpiro ratio: σm\sigma_{m} ≈ 5.25971747329116655.2597174732911665

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.337999886688130895775254576310.33799988668813089577525457631
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 6 6  = 123 1\cdot2\cdot3
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 2.02799932012878537465152745782.0279993201287853746515274578
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.027999320L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.3380001.0000006122.027999320\displaystyle 2.027999320 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.338000 \cdot 1.000000 \cdot 6}{1^2} \approx 2.027999320

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   4851.2.a.k

q2q4+3q5+q11+4q13+4q166q172q19+O(q20) q - 2 q^{4} + 3 q^{5} + q^{11} + 4 q^{13} + 4 q^{16} - 6 q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 28800
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 11 I0I_0^{*} additive -1 2 6 0
77 22 I6I_{6}^{*} additive -1 2 12 6
1111 33 I3I_{3} split multiplicative -1 1 3 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3Cs 3.12.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[262, 9, 873, 1378], [1, 18, 0, 1], [1379, 1368, 216, 923], [1, 9, 9, 82], [1, 6, 6, 37], [1385, 1368, 0, 1231], [1369, 18, 1368, 19], [1, 0, 18, 1], [1, 12, 0, 1]]
 
GL(2,Integers(1386)).subgroup(gens)
 
Gens := [[262, 9, 873, 1378], [1, 18, 0, 1], [1379, 1368, 216, 923], [1, 9, 9, 82], [1, 6, 6, 37], [1385, 1368, 0, 1231], [1369, 18, 1368, 19], [1, 0, 18, 1], [1, 12, 0, 1]];
 
sub<GL(2,Integers(1386))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1386=232711 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 , index 144144, genus 33, and generators

(26298731378),(11801),(13791368216923),(19982),(16637),(1385136801231),(136918136819),(10181),(11201)\left(\begin{array}{rr} 262 & 9 \\ 873 & 1378 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1379 & 1368 \\ 216 & 923 \end{array}\right),\left(\begin{array}{rr} 1 & 9 \\ 9 & 82 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1385 & 1368 \\ 0 & 1231 \end{array}\right),\left(\begin{array}{rr} 1369 & 18 \\ 1368 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1386])K:=\Q(E[1386]) is a degree-43110144004311014400 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1386Z)\GL_2(\Z/1386\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
33 additive 22 49=72 49 = 7^{2}
77 additive 3232 99=3211 99 = 3^{2} \cdot 11
1111 split multiplicative 1212 441=3272 441 = 3^{2} \cdot 7^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 4851n consists of 3 curves linked by isogenies of degrees dividing 9.

Twists

The minimal quadratic twist of this elliptic curve is 77b1, its twist by 2121.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(21)\Q(\sqrt{21}) Z/3Z\Z/3\Z 2.2.21.1-847.1-c2
22 Q(7)\Q(\sqrt{-7}) Z/3Z\Z/3\Z not in database
33 3.1.44.1 Z/2Z\Z/2\Z not in database
44 Q(3,7)\Q(\sqrt{-3}, \sqrt{-7}) Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
66 6.0.21296.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.2.17929296.1 Z/6Z\Z/6\Z not in database
66 6.0.664048.1 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1212 12.0.53356129302784.1 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.6.49661170246971776397429.2 Z/9Z\Z/9\Z not in database
1818 18.0.37873500299597331732167025312167625087.1 Z/9Z\Z/9\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss add ord add split ord ord ord ord ord ord ord ord ord ss
λ\lambda-invariant(s) 4,5 - 0 - 1 0 0 0 0 0 0 0 0 0 0,0
μ\mu-invariant(s) 0,0 - 0 - 0 0 0 0 0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.