Properties

Label 486720mw1
Conductor 486720486720
Discriminant 8.634×10188.634\times 10^{18}
j-invariant 2733594499360 \frac{273359449}{9360}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x31316172x563732624y^2=x^3-1316172x-563732624 Copy content Toggle raw display (homogenize, simplify)
y2z=x31316172xz2563732624z3y^2z=x^3-1316172xz^2-563732624z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31316172x563732624y^2=x^3-1316172x-563732624 Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([0, 0, 0, -1316172, -563732624])
 
Copy content gp:E = ellinit([0, 0, 0, -1316172, -563732624])
 
Copy content magma:E := EllipticCurve([0, 0, 0, -1316172, -563732624]);
 
Copy content oscar:E = elliptic_curve([0, 0, 0, -1316172, -563732624])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(489331246/119025,10348586131456/41063625)(489331246/119025, 10348586131456/41063625)17.38454536823459578839398105517.384545368234595788393981055\infty
(754,0)(-754, 0)0022

Integral points

(754,0) \left(-754, 0\right) Copy content Toggle raw display

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: NN  =  486720 486720  = 263251322^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2}
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: Δ\Delta  =  86338284035663462408633828403566346240 = 2223851372^{22} \cdot 3^{8} \cdot 5 \cdot 13^{7}
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: jj  =  2733594499360 \frac{273359449}{9360}  = 2432511131315932^{-4} \cdot 3^{-2} \cdot 5^{-1} \cdot 11^{3} \cdot 13^{-1} \cdot 59^{3}
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.40538695619355092241284763492.4053869561935509224128476349
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.46611463771119025543736688653-0.46611463771119025543736688653
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.87805520299008240.8780552029900824
Szpiro ratio: σm\sigma_{m} ≈ 4.1147376210922194.114737621092219

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 17.38454536823459578839398105517.384545368234595788393981055
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: Ω\Omega ≈ 0.141248426285392358124911890420.14124842628539235812491189042
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 16 16  = 22212 2^{2}\cdot2\cdot1\cdot2
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 9.82215869980057380570745962909.8221586998005738057074596290
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

9.822158700L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.14124817.38454516229.822158700\begin{aligned} 9.822158700 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.141248 \cdot 17.384545 \cdot 16}{2^2} \\ & \approx 9.822158700\end{aligned}

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([0, 0, 0, -1316172, -563732624]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([0, 0, 0, -1316172, -563732624]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 486720.2.a.mw

q+q5+6q17+O(q20) q + q^{5} + 6 q^{17} + O(q^{20}) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 8257536
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: not computed* (one of 3 curves in this isogeny class which might be optimal)
Manin constant: 1 (conditional*)
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 
* The optimal curve in each isogeny class has not been determined in all cases for conductors over 400000. The Manin constant is correct provided that this curve is optimal.

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I12I_{12}^{*} additive 1 6 22 4
33 22 I2I_{2}^{*} additive -1 2 8 2
55 11 I1I_{1} split multiplicative -1 1 1 1
1313 22 I1I_{1}^{*} additive 1 2 7 1

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 4.6.0.1

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[1, 0, 8, 1], [736, 3, 525, 1042], [1, 8, 0, 1], [1, 4, 4, 17], [317, 1362, 1230, 1493], [356, 519, 1137, 1034], [1553, 8, 1552, 9], [7, 6, 1554, 1555], [73, 588, 1110, 847], [1039, 0, 0, 1559]] GL(2,Integers(1560)).subgroup(gens)
 
Copy content magma:Gens := [[1, 0, 8, 1], [736, 3, 525, 1042], [1, 8, 0, 1], [1, 4, 4, 17], [317, 1362, 1230, 1493], [356, 519, 1137, 1034], [1553, 8, 1552, 9], [7, 6, 1554, 1555], [73, 588, 1110, 847], [1039, 0, 0, 1559]]; sub<GL(2,Integers(1560))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1560=233513 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 , index 4848, genus 00, and generators

(1081),(73635251042),(1801),(14417),(317136212301493),(35651911371034),(1553815529),(7615541555),(735881110847),(1039001559)\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 736 & 3 \\ 525 & 1042 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 317 & 1362 \\ 1230 & 1493 \end{array}\right),\left(\begin{array}{rr} 356 & 519 \\ 1137 & 1034 \end{array}\right),\left(\begin{array}{rr} 1553 & 8 \\ 1552 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 1554 & 1555 \end{array}\right),\left(\begin{array}{rr} 73 & 588 \\ 1110 & 847 \end{array}\right),\left(\begin{array}{rr} 1039 & 0 \\ 0 & 1559 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1560])K:=\Q(E[1560]) is a degree-1932263424019322634240 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1560Z)\GL_2(\Z/1560\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 7605=325132 7605 = 3^{2} \cdot 5 \cdot 13^{2}
33 additive 88 54080=265132 54080 = 2^{6} \cdot 5 \cdot 13^{2}
55 split multiplicative 66 97344=2632132 97344 = 2^{6} \cdot 3^{2} \cdot 13^{2}
1313 additive 9898 2880=26325 2880 = 2^{6} \cdot 3^{2} \cdot 5

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 486720mw consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 390a1, its twist by 312-312.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.