Show commands:
SageMath
E = EllipticCurve("nf1")
E.isogeny_class()
Elliptic curves in class 486720nf
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
486720.nf4 | 486720nf1 | \([0, 0, 0, 509028, 98671664]\) | \(253012016/219375\) | \(-12647209575536640000\) | \([2]\) | \(8257536\) | \(2.3529\) | \(\Gamma_0(N)\)-optimal* |
486720.nf3 | 486720nf2 | \([0, 0, 0, -2532972, 873773264]\) | \(7793764996/3080025\) | \(710267289762137702400\) | \([2, 2]\) | \(16515072\) | \(2.6994\) | \(\Gamma_0(N)\)-optimal* |
486720.nf1 | 486720nf3 | \([0, 0, 0, -35386572, 80997132944]\) | \(10625310339698/3855735\) | \(1778298843997055877120\) | \([2]\) | \(33030144\) | \(3.0460\) | \(\Gamma_0(N)\)-optimal* |
486720.nf2 | 486720nf4 | \([0, 0, 0, -18351372, -29643084016]\) | \(1481943889298/34543665\) | \(15931841668818411847680\) | \([2]\) | \(33030144\) | \(3.0460\) |
Rank
sage: E.rank()
The elliptic curves in class 486720nf have rank \(0\).
Complex multiplication
The elliptic curves in class 486720nf do not have complex multiplication.Modular form 486720.2.a.nf
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.