sage:E = EllipticCurve("nf1")
E.isogeny_class()
Elliptic curves in class 486720nf
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
486720.nf4 |
486720nf1 |
[0,0,0,509028,98671664] |
253012016/219375 |
−12647209575536640000 |
[2] |
8257536 |
2.3529
|
Γ0(N)-optimal* |
486720.nf3 |
486720nf2 |
[0,0,0,−2532972,873773264] |
7793764996/3080025 |
710267289762137702400 |
[2,2] |
16515072 |
2.6994
|
Γ0(N)-optimal* |
486720.nf1 |
486720nf3 |
[0,0,0,−35386572,80997132944] |
10625310339698/3855735 |
1778298843997055877120 |
[2] |
33030144 |
3.0460
|
Γ0(N)-optimal* |
486720.nf2 |
486720nf4 |
[0,0,0,−18351372,−29643084016] |
1481943889298/34543665 |
15931841668818411847680 |
[2] |
33030144 |
3.0460
|
|
*optimality has not been
determined rigorously for conductors over 400000. In
this case the optimal curve is certainly one of the 3 curves highlighted, and conditionally
curve 486720nf1.
sage:E.rank()
The elliptic curves in class 486720nf have
rank 0.
The elliptic curves in class 486720nf do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.