Properties

Label 4928.bc
Number of curves $2$
Conductor $4928$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bc1")
 
E.isogeny_class()
 

Elliptic curves in class 4928.bc

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4928.bc1 4928v2 \([0, -1, 0, -4705, -118239]\) \(351596839112/14235529\) \(466469814272\) \([2]\) \(12288\) \(1.0050\)  
4928.bc2 4928v1 \([0, -1, 0, 135, -6919]\) \(65939264/5021863\) \(-20569550848\) \([2]\) \(6144\) \(0.65845\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4928.bc have rank \(0\).

Complex multiplication

The elliptic curves in class 4928.bc do not have complex multiplication.

Modular form 4928.2.a.bc

sage: E.q_eigenform(10)
 
\(q + 2 q^{3} - 4 q^{5} - q^{7} + q^{9} - q^{11} - 4 q^{13} - 8 q^{15} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.