Show commands:
SageMath
E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 4928.g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
4928.g1 | 4928e2 | \([0, 1, 0, -3297, 66175]\) | \(15124197817/1294139\) | \(339250774016\) | \([2]\) | \(6144\) | \(0.95370\) | |
4928.g2 | 4928e1 | \([0, 1, 0, 223, 4927]\) | \(4657463/41503\) | \(-10879762432\) | \([2]\) | \(3072\) | \(0.60713\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 4928.g have rank \(1\).
Complex multiplication
The elliptic curves in class 4928.g do not have complex multiplication.Modular form 4928.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.