E = EllipticCurve("et1")
E.isogeny_class()
Elliptic curves in class 493680et
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
493680.et3 |
493680et1 |
[0,1,0,−115111,12285260] |
5951163357184/1129312125 |
32010325079634000 |
[2] |
4423680 |
1.8846
|
Γ0(N)-optimal |
493680.et2 |
493680et2 |
[0,1,0,−556156,−148607956] |
41948679809104/3291890625 |
1492936972164000000 |
[2,2] |
8847360 |
2.2312
|
|
493680.et4 |
493680et3 |
[0,1,0,554624,−667120060] |
10400706415004/112060546875 |
−203286624750000000000 |
[2] |
17694720 |
2.5778
|
|
493680.et1 |
493680et4 |
[0,1,0,−8723656,−9920204956] |
40472803590982276/281883375 |
511358559947136000 |
[2] |
17694720 |
2.5778
|
|
The elliptic curves in class 493680et have
rank 0.
The elliptic curves in class 493680et do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.