Properties

Label 493680et
Number of curves $4$
Conductor $493680$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("et1")
 
E.isogeny_class()
 

Elliptic curves in class 493680et

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
493680.et3 493680et1 \([0, 1, 0, -115111, 12285260]\) \(5951163357184/1129312125\) \(32010325079634000\) \([2]\) \(4423680\) \(1.8846\) \(\Gamma_0(N)\)-optimal
493680.et2 493680et2 \([0, 1, 0, -556156, -148607956]\) \(41948679809104/3291890625\) \(1492936972164000000\) \([2, 2]\) \(8847360\) \(2.2312\)  
493680.et4 493680et3 \([0, 1, 0, 554624, -667120060]\) \(10400706415004/112060546875\) \(-203286624750000000000\) \([2]\) \(17694720\) \(2.5778\)  
493680.et1 493680et4 \([0, 1, 0, -8723656, -9920204956]\) \(40472803590982276/281883375\) \(511358559947136000\) \([2]\) \(17694720\) \(2.5778\)  

Rank

sage: E.rank()
 

The elliptic curves in class 493680et have rank \(0\).

Complex multiplication

The elliptic curves in class 493680et do not have complex multiplication.

Modular form 493680.2.a.et

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + q^{9} - 6 q^{13} - q^{15} + q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.