Properties

Label 493680et2
Conductor 493680493680
Discriminant 1.493×10181.493\times 10^{18}
j-invariant 419486798091043291890625 \frac{41948679809104}{3291890625}
CM no
Rank 00
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x2556156x148607956y^2=x^3+x^2-556156x-148607956 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z556156xz2148607956z3y^2z=x^3+x^2z-556156xz^2-148607956z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x345048663x108200053962y^2=x^3-45048663x-108200053962 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, -556156, -148607956])
 
gp: E = ellinit([0, 1, 0, -556156, -148607956])
 
magma: E := EllipticCurve([0, 1, 0, -556156, -148607956]);
 
oscar: E = elliptic_curve([0, 1, 0, -556156, -148607956])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(521,0)(-521, 0)0022
(854,0)(854, 0)0022

Integral points

(521,0) \left(-521, 0\right) , (334,0) \left(-334, 0\right) , (854,0) \left(854, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  493680 493680  = 2435112172^{4} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  14929369721640000001492936972164000000 = 2836561161722^{8} \cdot 3^{6} \cdot 5^{6} \cdot 11^{6} \cdot 17^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  419486798091043291890625 \frac{41948679809104}{3291890625}  = 2436561721378932^{4} \cdot 3^{-6} \cdot 5^{-6} \cdot 17^{-2} \cdot 13789^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.23121490131541224750120067362.2312149013154122475012006736
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.570169144542930102525407470310.57016914454293010252540747031
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.95346091907500470.9534609190750047
Szpiro ratio: σm\sigma_{m} ≈ 3.9131514024305523.913151402430552

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.175693257362174920220994091710.17569325736217492022099409171
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 192 192  = 2(23)2222 2\cdot( 2 \cdot 3 )\cdot2\cdot2^{2}\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 2.10831908834609904265192910052.1083190883460990426519291005
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.108319088L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1756931.000000192422.108319088\displaystyle 2.108319088 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.175693 \cdot 1.000000 \cdot 192}{4^2} \approx 2.108319088

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 493680.2.a.et

q+q3q5+q96q13q15+q17+4q19+O(q20) q + q^{3} - q^{5} + q^{9} - 6 q^{13} - q^{15} + q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 8847360
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I0I_0^{*} additive 1 4 8 0
33 66 I6I_{6} split multiplicative -1 1 6 6
55 22 I6I_{6} nonsplit multiplicative 1 1 6 6
1111 44 I0I_0^{*} additive -1 2 6 0
1717 22 I2I_{2} split multiplicative -1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 2.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 4, 1], [3301, 5104, 3542, 10209], [11217, 4, 11216, 5], [8977, 8162, 0, 1], [1, 4, 0, 1], [8163, 8162, 10538, 3059], [8667, 3058, 10208, 2045], [4079, 0, 0, 11219]]
 
GL(2,Integers(11220)).subgroup(gens)
 
Gens := [[1, 0, 4, 1], [3301, 5104, 3542, 10209], [11217, 4, 11216, 5], [8977, 8162, 0, 1], [1, 4, 0, 1], [8163, 8162, 10538, 3059], [8667, 3058, 10208, 2045], [4079, 0, 0, 11219]];
 
sub<GL(2,Integers(11220))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 11220=22351117 11220 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 17 , index 4848, genus 00, and generators

(1041),(33015104354210209),(112174112165),(8977816201),(1401),(81638162105383059),(86673058102082045),(40790011219)\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3301 & 5104 \\ 3542 & 10209 \end{array}\right),\left(\begin{array}{rr} 11217 & 4 \\ 11216 & 5 \end{array}\right),\left(\begin{array}{rr} 8977 & 8162 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 8163 & 8162 \\ 10538 & 3059 \end{array}\right),\left(\begin{array}{rr} 8667 & 3058 \\ 10208 & 2045 \end{array}\right),\left(\begin{array}{rr} 4079 & 0 \\ 0 & 11219 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[11220])K:=\Q(E[11220]) is a degree-4764834201600047648342016000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/11220Z)\GL_2(\Z/11220\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 121=112 121 = 11^{2}
33 split multiplicative 44 32912=2411217 32912 = 2^{4} \cdot 11^{2} \cdot 17
55 nonsplit multiplicative 66 98736=24311217 98736 = 2^{4} \cdot 3 \cdot 11^{2} \cdot 17
1111 additive 6262 4080=243517 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17
1717 split multiplicative 1818 29040=2435112 29040 = 2^{4} \cdot 3 \cdot 5 \cdot 11^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 493680et consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 2040j2, its twist by 4444.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.