Show commands:
SageMath
E = EllipticCurve("i1")
E.isogeny_class()
Elliptic curves in class 494209i
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
494209.i2 | 494209i1 | \([0, 0, 1, -52022, 4571433]\) | \(-884736\) | \(-17598317439331\) | \([]\) | \(1039680\) | \(1.4553\) | \(\Gamma_0(N)\)-optimal | \(-19\) |
494209.i1 | 494209i2 | \([0, 0, 1, -18779942, -31355460662]\) | \(-884736\) | \(-827928348050990945611\) | \([]\) | \(19753920\) | \(2.9275\) | \(-19\) |
Rank
sage: E.rank()
The elliptic curves in class 494209i have rank \(1\).
Complex multiplication
Each elliptic curve in class 494209i has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-19}) \).Modular form 494209.2.a.i
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 19 \\ 19 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.