Properties

Label 4998bd
Number of curves 66
Conductor 49984998
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bd1")
 
E.isogeny_class()
 

Elliptic curves in class 4998bd

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4998.be5 4998bd1 [1,1,1,1667,24991][1, 1, 1, -1667, -24991] 4354703137/3525124354703137/352512 4147268428841472684288 [2][2] 61446144 0.780310.78031 Γ0(N)\Gamma_0(N)-optimal
4998.be4 4998bd2 [1,1,1,5587,130241][1, 1, 1, -5587, 130241] 163936758817/30338064163936758817/30338064 35692428915363569242891536 [2,2][2, 2] 1228812288 1.12691.1269  
4998.be2 4998bd3 [1,1,1,84967,9497081][1, 1, 1, -84967, 9497081] 576615941610337/27060804576615941610337/27060804 31836765297963183676529796 [2,2][2, 2] 2457624576 1.47351.4735  
4998.be6 4998bd4 [1,1,1,11073,776649][1, 1, 1, 11073, 776649] 1276229915423/29271770281276229915423/2927177028 344379450167172-344379450167172 [2][2] 2457624576 1.47351.4735  
4998.be1 4998bd5 [1,1,1,1359457,609526973][1, 1, 1, -1359457, 609526973] 2361739090258884097/52022361739090258884097/5202 612010098612010098 [2][2] 4915249152 1.82001.8200  
4998.be3 4998bd6 [1,1,1,80557,10532549][1, 1, 1, -80557, 10532549] 491411892194497/125563633938-491411892194497/125563633938 14772435969171762-14772435969171762 [2][2] 4915249152 1.82001.8200  

Rank

sage: E.rank()
 

The elliptic curves in class 4998bd have rank 11.

Complex multiplication

The elliptic curves in class 4998bd do not have complex multiplication.

Modular form 4998.2.a.bd

sage: E.q_eigenform(10)
 
q+q2q3+q4+2q5q6+q8+q9+2q104q11q12+2q132q15+q16q17+q184q19+O(q20)q + q^{2} - q^{3} + q^{4} + 2 q^{5} - q^{6} + q^{8} + q^{9} + 2 q^{10} - 4 q^{11} - q^{12} + 2 q^{13} - 2 q^{15} + q^{16} - q^{17} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(124488212244421422424188842814842841)\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.