Properties

Label 50.a
Number of curves $4$
Conductor $50$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 50.a have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 50.a do not have complex multiplication.

Modular form 50.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} + 2 q^{7} - q^{8} - 2 q^{9} - 3 q^{11} + q^{12} - 4 q^{13} - 2 q^{14} + q^{16} - 3 q^{17} + 2 q^{18} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 15 & 3 & 5 \\ 15 & 1 & 5 & 3 \\ 3 & 5 & 1 & 15 \\ 5 & 3 & 15 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 50.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
50.a1 50a2 \([1, 0, 1, -126, -552]\) \(-349938025/8\) \(-5000\) \([]\) \(6\) \(-0.17679\)  
50.a2 50a3 \([1, 0, 1, -76, 298]\) \(-121945/32\) \(-12500000\) \([3]\) \(10\) \(0.078619\)  
50.a3 50a1 \([1, 0, 1, -1, -2]\) \(-25/2\) \(-1250\) \([3]\) \(2\) \(-0.72610\) \(\Gamma_0(N)\)-optimal
50.a4 50a4 \([1, 0, 1, 549, -2202]\) \(46969655/32768\) \(-12800000000\) \([]\) \(30\) \(0.62793\)