Properties

Label 50.a
Number of curves 44
Conductor 5050
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 50.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
50.a1 50a2 [1,0,1,126,552][1, 0, 1, -126, -552] 349938025/8-349938025/8 5000-5000 [][] 66 0.17679-0.17679  
50.a2 50a3 [1,0,1,76,298][1, 0, 1, -76, 298] 121945/32-121945/32 12500000-12500000 [3][3] 1010 0.0786190.078619  
50.a3 50a1 [1,0,1,1,2][1, 0, 1, -1, -2] 25/2-25/2 1250-1250 [3][3] 22 0.72610-0.72610 Γ0(N)\Gamma_0(N)-optimal
50.a4 50a4 [1,0,1,549,2202][1, 0, 1, 549, -2202] 46969655/3276846969655/32768 12800000000-12800000000 [][] 3030 0.627930.62793  

Rank

sage: E.rank()
 

The elliptic curves in class 50.a have rank 00.

Complex multiplication

The elliptic curves in class 50.a do not have complex multiplication.

Modular form 50.2.a.a

sage: E.q_eigenform(10)
 
qq2+q3+q4q6+2q7q82q93q11+q124q132q14+q163q17+2q18+5q19+O(q20)q - q^{2} + q^{3} + q^{4} - q^{6} + 2 q^{7} - q^{8} - 2 q^{9} - 3 q^{11} + q^{12} - 4 q^{13} - 2 q^{14} + q^{16} - 3 q^{17} + 2 q^{18} + 5 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(11535151533511553151)\left(\begin{array}{rrrr} 1 & 15 & 3 & 5 \\ 15 & 1 & 5 & 3 \\ 3 & 5 & 1 & 15 \\ 5 & 3 & 15 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.