Properties

Label 504.f
Number of curves 22
Conductor 504504
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 504.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
504.f1 504d2 [0,0,0,999,12150][0, 0, 0, -999, -12150] 21882096/721882096/7 3527193635271936 [2][2] 192192 0.423010.42301  
504.f2 504d1 [0,0,0,54,243][0, 0, 0, -54, -243] 55296/49-55296/49 15431472-15431472 [2][2] 9696 0.0764340.076434 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 504.f have rank 00.

Complex multiplication

The elliptic curves in class 504.f do not have complex multiplication.

Modular form 504.2.a.f

sage: E.q_eigenform(10)
 
q+2q5q7+2q11+2q13+6q174q19+O(q20)q + 2 q^{5} - q^{7} + 2 q^{11} + 2 q^{13} + 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.