Show commands:
SageMath
E = EllipticCurve("bi1")
E.isogeny_class()
Elliptic curves in class 5040bi
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
5040.k7 | 5040bi1 | \([0, 0, 0, 30237, 1524962]\) | \(1023887723039/928972800\) | \(-2773897917235200\) | \([2]\) | \(24576\) | \(1.6506\) | \(\Gamma_0(N)\)-optimal |
5040.k6 | 5040bi2 | \([0, 0, 0, -154083, 13653218]\) | \(135487869158881/51438240000\) | \(153593761628160000\) | \([2, 2]\) | \(49152\) | \(1.9972\) | |
5040.k5 | 5040bi3 | \([0, 0, 0, -1087203, -426592798]\) | \(47595748626367201/1215506250000\) | \(3629482214400000000\) | \([2, 2]\) | \(98304\) | \(2.3437\) | |
5040.k4 | 5040bi4 | \([0, 0, 0, -2170083, 1230107618]\) | \(378499465220294881/120530818800\) | \(359903096443699200\) | \([2]\) | \(98304\) | \(2.3437\) | |
5040.k2 | 5040bi5 | \([0, 0, 0, -17287203, -27665272798]\) | \(191342053882402567201/129708022500\) | \(387306079856640000\) | \([2, 2]\) | \(196608\) | \(2.6903\) | |
5040.k8 | 5040bi6 | \([0, 0, 0, 182877, -1363657822]\) | \(226523624554079/269165039062500\) | \(-803722500000000000000\) | \([2]\) | \(196608\) | \(2.6903\) | |
5040.k1 | 5040bi7 | \([0, 0, 0, -276595203, -1770578063998]\) | \(783736670177727068275201/360150\) | \(1075402137600\) | \([2]\) | \(393216\) | \(3.0369\) | |
5040.k3 | 5040bi8 | \([0, 0, 0, -17179203, -28028001598]\) | \(-187778242790732059201/4984939585440150\) | \(-14884949843090920857600\) | \([2]\) | \(393216\) | \(3.0369\) |
Rank
sage: E.rank()
The elliptic curves in class 5040bi have rank \(0\).
Complex multiplication
The elliptic curves in class 5040bi do not have complex multiplication.Modular form 5040.2.a.bi
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 2 & 2 & 4 & 4 \\ 4 & 2 & 4 & 1 & 8 & 8 & 16 & 16 \\ 8 & 4 & 2 & 8 & 1 & 4 & 2 & 2 \\ 8 & 4 & 2 & 8 & 4 & 1 & 8 & 8 \\ 16 & 8 & 4 & 16 & 2 & 8 & 1 & 4 \\ 16 & 8 & 4 & 16 & 2 & 8 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.