Properties

Label 5040bi
Number of curves $8$
Conductor $5040$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bi1")
 
E.isogeny_class()
 

Elliptic curves in class 5040bi

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5040.k7 5040bi1 \([0, 0, 0, 30237, 1524962]\) \(1023887723039/928972800\) \(-2773897917235200\) \([2]\) \(24576\) \(1.6506\) \(\Gamma_0(N)\)-optimal
5040.k6 5040bi2 \([0, 0, 0, -154083, 13653218]\) \(135487869158881/51438240000\) \(153593761628160000\) \([2, 2]\) \(49152\) \(1.9972\)  
5040.k5 5040bi3 \([0, 0, 0, -1087203, -426592798]\) \(47595748626367201/1215506250000\) \(3629482214400000000\) \([2, 2]\) \(98304\) \(2.3437\)  
5040.k4 5040bi4 \([0, 0, 0, -2170083, 1230107618]\) \(378499465220294881/120530818800\) \(359903096443699200\) \([2]\) \(98304\) \(2.3437\)  
5040.k2 5040bi5 \([0, 0, 0, -17287203, -27665272798]\) \(191342053882402567201/129708022500\) \(387306079856640000\) \([2, 2]\) \(196608\) \(2.6903\)  
5040.k8 5040bi6 \([0, 0, 0, 182877, -1363657822]\) \(226523624554079/269165039062500\) \(-803722500000000000000\) \([2]\) \(196608\) \(2.6903\)  
5040.k1 5040bi7 \([0, 0, 0, -276595203, -1770578063998]\) \(783736670177727068275201/360150\) \(1075402137600\) \([2]\) \(393216\) \(3.0369\)  
5040.k3 5040bi8 \([0, 0, 0, -17179203, -28028001598]\) \(-187778242790732059201/4984939585440150\) \(-14884949843090920857600\) \([2]\) \(393216\) \(3.0369\)  

Rank

sage: E.rank()
 

The elliptic curves in class 5040bi have rank \(0\).

Complex multiplication

The elliptic curves in class 5040bi do not have complex multiplication.

Modular form 5040.2.a.bi

sage: E.q_eigenform(10)
 
\(q - q^{5} + q^{7} - 4 q^{11} - 2 q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 2 & 2 & 4 & 4 \\ 4 & 2 & 4 & 1 & 8 & 8 & 16 & 16 \\ 8 & 4 & 2 & 8 & 1 & 4 & 2 & 2 \\ 8 & 4 & 2 & 8 & 4 & 1 & 8 & 8 \\ 16 & 8 & 4 & 16 & 2 & 8 & 1 & 4 \\ 16 & 8 & 4 & 16 & 2 & 8 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.