Properties

Label 50430f1
Conductor 5043050430
Discriminant 1.026×1013-1.026\times 10^{13}
j-invariant 3579112160 \frac{357911}{2160}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x2+2487x+147573y^2+xy=x^3+x^2+2487x+147573 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z+2487xz2+147573z3y^2z+xyz=x^3+x^2z+2487xz^2+147573z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+3222477x+6836825358y^2=x^3+3222477x+6836825358 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 0, 2487, 147573])
 
gp: E = ellinit([1, 1, 0, 2487, 147573])
 
magma: E := EllipticCurve([1, 1, 0, 2487, 147573]);
 
oscar: E = elliptic_curve([1, 1, 0, 2487, 147573])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1186/49,97413/343)(-1186/49, 97413/343)7.60503012369232677020776848097.6050301236923267702077684809\infty
(38,19)(-38, 19)0022

Integral points

(38,19) \left(-38, 19\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  50430 50430  = 2354122 \cdot 3 \cdot 5 \cdot 41^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  10260225160560-10260225160560 = 124335416-1 \cdot 2^{4} \cdot 3^{3} \cdot 5 \cdot 41^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  3579112160 \frac{357911}{2160}  = 2433517132^{-4} \cdot 3^{-3} \cdot 5^{-1} \cdot 71^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.17849869367450542710776926821.1784986936745054271077692682
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.67828733967764847482561241832-0.67828733967764847482561241832
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.99689172462820630.9968917246282063
Szpiro ratio: σm\sigma_{m} ≈ 3.44588416598460333.4458841659846033

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 7.60503012369232677020776848097.6050301236923267702077684809
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.523486369301709062263427910260.52348636930170906226342791026
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 2112 2\cdot1\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.98112960788182352120189517703.9811296078818235212018951770
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.981129608L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.5234867.6050304223.981129608\displaystyle 3.981129608 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.523486 \cdot 7.605030 \cdot 4}{2^2} \approx 3.981129608

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 50430.2.a.f

qq2q3+q4q5+q6+4q7q8+q9+q10q122q134q14+q15+q166q17q18+4q19+O(q20) q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} + 4 q^{7} - q^{8} + q^{9} + q^{10} - q^{12} - 2 q^{13} - 4 q^{14} + q^{15} + q^{16} - 6 q^{17} - q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 138240
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I4I_{4} nonsplit multiplicative 1 1 4 4
33 11 I3I_{3} nonsplit multiplicative 1 1 3 3
55 11 I1I_{1} nonsplit multiplicative 1 1 1 1
4141 22 I0I_0^{*} additive 1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 4.6.0.1
33 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[3937, 984, 4182, 247], [3479, 0, 0, 4919], [1, 12, 12, 145], [4897, 24, 4896, 25], [3609, 2788, 4100, 2789], [1, 24, 0, 1], [4552, 861, 3075, 4306], [616, 2583, 41, 4634], [15, 106, 3614, 611], [1, 0, 24, 1]]
 
GL(2,Integers(4920)).subgroup(gens)
 
Gens := [[3937, 984, 4182, 247], [3479, 0, 0, 4919], [1, 12, 12, 145], [4897, 24, 4896, 25], [3609, 2788, 4100, 2789], [1, 24, 0, 1], [4552, 861, 3075, 4306], [616, 2583, 41, 4634], [15, 106, 3614, 611], [1, 0, 24, 1]];
 
sub<GL(2,Integers(4920))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 4920=233541 4920 = 2^{3} \cdot 3 \cdot 5 \cdot 41 , index 384384, genus 55, and generators

(39379844182247),(3479004919),(11212145),(489724489625),(3609278841002789),(12401),(455286130754306),(6162583414634),(151063614611),(10241)\left(\begin{array}{rr} 3937 & 984 \\ 4182 & 247 \end{array}\right),\left(\begin{array}{rr} 3479 & 0 \\ 0 & 4919 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 4897 & 24 \\ 4896 & 25 \end{array}\right),\left(\begin{array}{rr} 3609 & 2788 \\ 4100 & 2789 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4552 & 861 \\ 3075 & 4306 \end{array}\right),\left(\begin{array}{rr} 616 & 2583 \\ 41 & 4634 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 3614 & 611 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[4920])K:=\Q(E[4920]) is a degree-253919232000253919232000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/4920Z)\GL_2(\Z/4920\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 25215=35412 25215 = 3 \cdot 5 \cdot 41^{2}
33 nonsplit multiplicative 44 16810=25412 16810 = 2 \cdot 5 \cdot 41^{2}
55 nonsplit multiplicative 66 10086=23412 10086 = 2 \cdot 3 \cdot 41^{2}
4141 additive 842842 30=235 30 = 2 \cdot 3 \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3, 4, 6 and 12.
Its isogeny class 50430f consists of 8 curves linked by isogenies of degrees dividing 12.

Twists

The minimal quadratic twist of this elliptic curve is 30a1, its twist by 4141.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(15)\Q(\sqrt{-15}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(205)\Q(\sqrt{205}) Z/4Z\Z/4\Z not in database
22 Q(123)\Q(\sqrt{-123}) Z/4Z\Z/4\Z not in database
22 Q(41)\Q(\sqrt{41}) Z/6Z\Z/6\Z not in database
44 Q(15,123)\Q(\sqrt{-15}, \sqrt{-123}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(15,41)\Q(\sqrt{-15}, \sqrt{41}) Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
44 Q(5,41)\Q(\sqrt{5}, \sqrt{41}) Z/12Z\Z/12\Z not in database
44 Q(3,41)\Q(\sqrt{-3}, \sqrt{41}) Z/12Z\Z/12\Z not in database
66 6.0.18608670000.8 Z/12Z\Z/12\Z not in database
88 8.0.8239919076000000.4 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.4.1627638336000000.24 Z/8Z\Z/8\Z not in database
88 8.0.210941928345600.2 Z/8Z\Z/8\Z not in database
88 8.0.143054150625.1 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1212 deg 12 Z/3ZZ/12Z\Z/3\Z \oplus \Z/12\Z not in database
1212 deg 12 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1616 deg 16 Z/24Z\Z/24\Z not in database
1616 deg 16 Z/24Z\Z/24\Z not in database
1818 18.6.6740503709970873696230601468900000000.1 Z/18Z\Z/18\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit nonsplit nonsplit ord ss ord ord ord ss ord ord ord add ord ss
λ\lambda-invariant(s) 4 1 5 1 1,1 3 1 1 1,1 1 1 1 - 1 1,1
μ\mu-invariant(s) 0 0 0 0 0,0 0 0 0 0,0 0 0 0 - 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.