sage:E = EllipticCurve("q1")
E.isogeny_class()
Elliptic curves in class 5070q
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
5070.s3 |
5070q1 |
[1,1,1,−2285,39827] |
273359449/9360 |
45178932240 |
[4] |
5376 |
0.81636
|
Γ0(N)-optimal |
5070.s2 |
5070q2 |
[1,1,1,−5665,−110245] |
4165509529/1368900 |
6607418840100 |
[2,2] |
10752 |
1.1629
|
|
5070.s1 |
5070q3 |
[1,1,1,−81715,−9023305] |
12501706118329/2570490 |
12407264266410 |
[2] |
21504 |
1.5095
|
|
5070.s4 |
5070q4 |
[1,1,1,16305,−734193] |
99317171591/106616250 |
−514616275046250 |
[2] |
21504 |
1.5095
|
|
sage:E.rank()
The elliptic curves in class 5070q have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1−T |
3 | 1+T |
5 | 1−T |
13 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+3T+7T2 |
1.7.d
|
11 |
1−T+11T2 |
1.11.ab
|
17 |
1+17T2 |
1.17.a
|
19 |
1+5T+19T2 |
1.19.f
|
23 |
1+4T+23T2 |
1.23.e
|
29 |
1+29T2 |
1.29.a
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 5070q do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.