Properties

Label 5070q
Number of curves 44
Conductor 50705070
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Elliptic curves in class 5070q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5070.s3 5070q1 [1,1,1,2285,39827][1, 1, 1, -2285, 39827] 273359449/9360273359449/9360 4517893224045178932240 [4][4] 53765376 0.816360.81636 Γ0(N)\Gamma_0(N)-optimal
5070.s2 5070q2 [1,1,1,5665,110245][1, 1, 1, -5665, -110245] 4165509529/13689004165509529/1368900 66074188401006607418840100 [2,2][2, 2] 1075210752 1.16291.1629  
5070.s1 5070q3 [1,1,1,81715,9023305][1, 1, 1, -81715, -9023305] 12501706118329/257049012501706118329/2570490 1240726426641012407264266410 [2][2] 2150421504 1.50951.5095  
5070.s4 5070q4 [1,1,1,16305,734193][1, 1, 1, 16305, -734193] 99317171591/10661625099317171591/106616250 514616275046250-514616275046250 [2][2] 2150421504 1.50951.5095  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5070q have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
221T1 - T
331+T1 + T
551T1 - T
131311
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1+3T+7T2 1 + 3 T + 7 T^{2} 1.7.d
1111 1T+11T2 1 - T + 11 T^{2} 1.11.ab
1717 1+17T2 1 + 17 T^{2} 1.17.a
1919 1+5T+19T2 1 + 5 T + 19 T^{2} 1.19.f
2323 1+4T+23T2 1 + 4 T + 23 T^{2} 1.23.e
2929 1+29T2 1 + 29 T^{2} 1.29.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5070q do not have complex multiplication.

Modular form 5070.2.a.q

Copy content sage:E.q_eigenform(10)
 
q+q2q3+q4+q5q6+q8+q9+q10q12q15+q166q17+q18+O(q20)q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{8} + q^{9} + q^{10} - q^{12} - q^{15} + q^{16} - 6 q^{17} + q^{18} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.