Properties

Label 5070q
Number of curves $4$
Conductor $5070$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("q1")
 
E.isogeny_class()
 

Elliptic curves in class 5070q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5070.s3 5070q1 \([1, 1, 1, -2285, 39827]\) \(273359449/9360\) \(45178932240\) \([4]\) \(5376\) \(0.81636\) \(\Gamma_0(N)\)-optimal
5070.s2 5070q2 \([1, 1, 1, -5665, -110245]\) \(4165509529/1368900\) \(6607418840100\) \([2, 2]\) \(10752\) \(1.1629\)  
5070.s1 5070q3 \([1, 1, 1, -81715, -9023305]\) \(12501706118329/2570490\) \(12407264266410\) \([2]\) \(21504\) \(1.5095\)  
5070.s4 5070q4 \([1, 1, 1, 16305, -734193]\) \(99317171591/106616250\) \(-514616275046250\) \([2]\) \(21504\) \(1.5095\)  

Rank

sage: E.rank()
 

The elliptic curves in class 5070q have rank \(1\).

Complex multiplication

The elliptic curves in class 5070q do not have complex multiplication.

Modular form 5070.2.a.q

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{8} + q^{9} + q^{10} - q^{12} - q^{15} + q^{16} - 6 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.