Properties

Label 51984cq
Number of curves $2$
Conductor $51984$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("cq1")
 
E.isogeny_class()
 

Elliptic curves in class 51984cq

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
51984.z2 51984cq1 \([0, 0, 0, 1022352, 454449904]\) \(841232384/1121931\) \(-157606901180488986624\) \([]\) \(1382400\) \(2.5614\) \(\Gamma_0(N)\)-optimal
51984.z1 51984cq2 \([0, 0, 0, -228227088, 1327088209264]\) \(-9358714467168256/22284891\) \(-3130542443033456062464\) \([]\) \(6912000\) \(3.3661\)  

Rank

sage: E.rank()
 

The elliptic curves in class 51984cq have rank \(0\).

Complex multiplication

The elliptic curves in class 51984cq do not have complex multiplication.

Modular form 51984.2.a.cq

sage: E.q_eigenform(10)
 
\(q - q^{5} - 3 q^{7} - 3 q^{11} + 6 q^{13} - 3 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.