Properties

Label 5202.d
Number of curves 44
Conductor 52025202
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 5202.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5202.d1 5202a4 [1,1,0,293967,42466387][1, -1, 0, -293967, 42466387] 159661140625/48275138159661140625/48275138 849463221880991538849463221880991538 [2][2] 8294482944 2.14542.1454  
5202.d2 5202a3 [1,1,0,267957,53447809][1, -1, 0, -267957, 53447809] 120920208625/19652120920208625/19652 345802247865252345802247865252 [2][2] 4147241472 1.79881.7988  
5202.d3 5202a2 [1,1,0,111897,14375867][1, -1, 0, -111897, -14375867] 8805624625/23128805624625/2312 4068261739591240682617395912 [2][2] 2764827648 1.59611.5961  
5202.d4 5202a1 [1,1,0,7857,164003][1, -1, 0, -7857, -164003] 3048625/10883048625/1088 1914476112748819144761127488 [2][2] 1382413824 1.24951.2495 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 5202.d have rank 00.

Complex multiplication

The elliptic curves in class 5202.d do not have complex multiplication.

Modular form 5202.2.a.d

sage: E.q_eigenform(10)
 
qq2+q4+4q7q8+6q11+2q134q14+q164q19+O(q20)q - q^{2} + q^{4} + 4 q^{7} - q^{8} + 6 q^{11} + 2 q^{13} - 4 q^{14} + q^{16} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1236216336126321)\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.