E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 5202.d
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
5202.d1 |
5202a4 |
[1,−1,0,−293967,42466387] |
159661140625/48275138 |
849463221880991538 |
[2] |
82944 |
2.1454
|
|
5202.d2 |
5202a3 |
[1,−1,0,−267957,53447809] |
120920208625/19652 |
345802247865252 |
[2] |
41472 |
1.7988
|
|
5202.d3 |
5202a2 |
[1,−1,0,−111897,−14375867] |
8805624625/2312 |
40682617395912 |
[2] |
27648 |
1.5961
|
|
5202.d4 |
5202a1 |
[1,−1,0,−7857,−164003] |
3048625/1088 |
19144761127488 |
[2] |
13824 |
1.2495
|
Γ0(N)-optimal |
The elliptic curves in class 5202.d have
rank 0.
The elliptic curves in class 5202.d do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1236216336126321⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.