E = EllipticCurve("j1")
E.isogeny_class()
Elliptic curves in class 5202.j
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
5202.j1 |
5202h3 |
[1,−1,1,−1952105,794166441] |
46753267515625/11591221248 |
203962465044874395648 |
[2] |
165888 |
2.6073
|
|
5202.j2 |
5202h1 |
[1,−1,1,−664610,−208300575] |
1845026709625/793152 |
13956530861938752 |
[2] |
55296 |
2.0580
|
Γ0(N)-optimal |
5202.j3 |
5202h2 |
[1,−1,1,−560570,−275801727] |
−1107111813625/1228691592 |
−21620410871500869192 |
[2] |
110592 |
2.4046
|
|
5202.j4 |
5202h4 |
[1,−1,1,4706455,5031674025] |
655215969476375/1001033261568 |
−17614469368924240531968 |
[2] |
331776 |
2.9539
|
|
The elliptic curves in class 5202.j have
rank 1.
The elliptic curves in class 5202.j do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1362312662132631⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.