Properties

Label 5202.j
Number of curves 44
Conductor 52025202
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 5202.j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5202.j1 5202h3 [1,1,1,1952105,794166441][1, -1, 1, -1952105, 794166441] 46753267515625/1159122124846753267515625/11591221248 203962465044874395648203962465044874395648 [2][2] 165888165888 2.60732.6073  
5202.j2 5202h1 [1,1,1,664610,208300575][1, -1, 1, -664610, -208300575] 1845026709625/7931521845026709625/793152 1395653086193875213956530861938752 [2][2] 5529655296 2.05802.0580 Γ0(N)\Gamma_0(N)-optimal
5202.j3 5202h2 [1,1,1,560570,275801727][1, -1, 1, -560570, -275801727] 1107111813625/1228691592-1107111813625/1228691592 21620410871500869192-21620410871500869192 [2][2] 110592110592 2.40462.4046  
5202.j4 5202h4 [1,1,1,4706455,5031674025][1, -1, 1, 4706455, 5031674025] 655215969476375/1001033261568655215969476375/1001033261568 17614469368924240531968-17614469368924240531968 [2][2] 331776331776 2.95392.9539  

Rank

sage: E.rank()
 

The elliptic curves in class 5202.j have rank 11.

Complex multiplication

The elliptic curves in class 5202.j do not have complex multiplication.

Modular form 5202.2.a.j

sage: E.q_eigenform(10)
 
q+q2+q42q7+q8+2q132q14+q164q19+O(q20)q + q^{2} + q^{4} - 2 q^{7} + q^{8} + 2 q^{13} - 2 q^{14} + q^{16} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1362312662132631)\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.