Properties

Label 5202.j
Number of curves $4$
Conductor $5202$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 5202.j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5202.j1 5202h3 \([1, -1, 1, -1952105, 794166441]\) \(46753267515625/11591221248\) \(203962465044874395648\) \([2]\) \(165888\) \(2.6073\)  
5202.j2 5202h1 \([1, -1, 1, -664610, -208300575]\) \(1845026709625/793152\) \(13956530861938752\) \([2]\) \(55296\) \(2.0580\) \(\Gamma_0(N)\)-optimal
5202.j3 5202h2 \([1, -1, 1, -560570, -275801727]\) \(-1107111813625/1228691592\) \(-21620410871500869192\) \([2]\) \(110592\) \(2.4046\)  
5202.j4 5202h4 \([1, -1, 1, 4706455, 5031674025]\) \(655215969476375/1001033261568\) \(-17614469368924240531968\) \([2]\) \(331776\) \(2.9539\)  

Rank

sage: E.rank()
 

The elliptic curves in class 5202.j have rank \(1\).

Complex multiplication

The elliptic curves in class 5202.j do not have complex multiplication.

Modular form 5202.2.a.j

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 2 q^{7} + q^{8} + 2 q^{13} - 2 q^{14} + q^{16} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.