sage:E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 520a
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
520.a3 |
520a1 |
[0,0,0,−23,42] |
5256144/65 |
16640 |
[2] |
32 |
−0.38003
|
Γ0(N)-optimal |
520.a2 |
520a2 |
[0,0,0,−43,−42] |
8586756/4225 |
4326400 |
[2,2] |
64 |
−0.033453
|
|
520.a1 |
520a3 |
[0,0,0,−563,−5138] |
9636491538/8125 |
16640000 |
[2] |
128 |
0.31312
|
|
520.a4 |
520a4 |
[0,0,0,157,−322] |
208974222/142805 |
−292464640 |
[2] |
128 |
0.31312
|
|
sage:E.rank()
The elliptic curves in class 520a have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
5 | 1+T |
13 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+3T2 |
1.3.a
|
7 |
1+7T2 |
1.7.a
|
11 |
1+4T+11T2 |
1.11.e
|
17 |
1+6T+17T2 |
1.17.g
|
19 |
1−4T+19T2 |
1.19.ae
|
23 |
1+23T2 |
1.23.a
|
29 |
1+2T+29T2 |
1.29.c
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 520a do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.