Properties

Label 529200.s1
Conductor 529200529200
Discriminant 3.177×1014-3.177\times 10^{14}
j-invariant 597196825 -\frac{5971968}{25}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x388200x10118500y^2=x^3-88200x-10118500 Copy content Toggle raw display (homogenize, simplify)
y2z=x388200xz210118500z3y^2z=x^3-88200xz^2-10118500z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x388200x10118500y^2=x^3-88200x-10118500 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -88200, -10118500])
 
gp: E = ellinit([0, 0, 0, -88200, -10118500])
 
magma: E := EllipticCurve([0, 0, 0, -88200, -10118500]);
 
oscar: E = elliptic_curve([0, 0, 0, -88200, -10118500])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(6632390/19321,630002150/2685619)(6632390/19321, 630002150/2685619)13.81028767049028749172120504913.810287670490287491721205049\infty

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  529200 529200  = 243352722^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  317652300000000-317652300000000 = 128335876-1 \cdot 2^{8} \cdot 3^{3} \cdot 5^{8} \cdot 7^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  597196825 -\frac{5971968}{25}  = 12133652-1 \cdot 2^{13} \cdot 3^{6} \cdot 5^{-2}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.63763638788764802564732308791.6376363878876480256473230879
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.87678883539738310999936567397-0.87678883539738310999936567397
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.09043509069626741.0904350906962674
Szpiro ratio: σm\sigma_{m} ≈ 3.4738959484385443.473895948438544

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 13.81028767049028749172120504913.810287670490287491721205049
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.138482092553330499504621177060.13848209255333049950462117706
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 2121 2\cdot1\cdot2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 7.64991014149182021019954851337.6499101414918202101995485133
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

7.649910141L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.13848213.8102884127.649910141\displaystyle 7.649910141 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.138482 \cdot 13.810288 \cdot 4}{1^2} \approx 7.649910141

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 529200.2.a.s

q6q11q13q19+O(q20) q - 6 q^{11} - q^{13} - q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2612736
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I0I_0^{*} additive -1 4 8 0
33 11 IIII additive 1 3 3 0
55 22 I2I_{2}^{*} additive 1 2 8 2
77 11 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[415, 6, 414, 7], [4, 3, 9, 7], [104, 105, 105, 419], [386, 315, 385, 316], [209, 0, 0, 419], [83, 0, 0, 419], [179, 0, 0, 419], [69, 140, 70, 139], [1, 6, 0, 1], [3, 4, 8, 11], [1, 0, 6, 1]]
 
GL(2,Integers(420)).subgroup(gens)
 
Gens := [[415, 6, 414, 7], [4, 3, 9, 7], [104, 105, 105, 419], [386, 315, 385, 316], [209, 0, 0, 419], [83, 0, 0, 419], [179, 0, 0, 419], [69, 140, 70, 139], [1, 6, 0, 1], [3, 4, 8, 11], [1, 0, 6, 1]];
 
sub<GL(2,Integers(420))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 420=22357 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 , index 1616, genus 00, and generators

(41564147),(4397),(104105105419),(386315385316),(20900419),(8300419),(17900419),(6914070139),(1601),(34811),(1061)\left(\begin{array}{rr} 415 & 6 \\ 414 & 7 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 104 & 105 \\ 105 & 419 \end{array}\right),\left(\begin{array}{rr} 386 & 315 \\ 385 & 316 \end{array}\right),\left(\begin{array}{rr} 209 & 0 \\ 0 & 419 \end{array}\right),\left(\begin{array}{rr} 83 & 0 \\ 0 & 419 \end{array}\right),\left(\begin{array}{rr} 179 & 0 \\ 0 & 419 \end{array}\right),\left(\begin{array}{rr} 69 & 140 \\ 70 & 139 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[420])K:=\Q(E[420]) is a degree-278691840278691840 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/420Z)\GL_2(\Z/420\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 33075=335272 33075 = 3^{3} \cdot 5^{2} \cdot 7^{2}
33 additive 22 19600=245272 19600 = 2^{4} \cdot 5^{2} \cdot 7^{2}
55 additive 1818 21168=243372 21168 = 2^{4} \cdot 3^{3} \cdot 7^{2}
77 additive 2626 10800=243352 10800 = 2^{4} \cdot 3^{3} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 529200.s consists of 2 curves linked by isogenies of degree 3.

Twists

The minimal quadratic twist of this elliptic curve is 540.b1, its twist by 420-420.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.