Properties

Label 529200.s1
Conductor $529200$
Discriminant $-3.177\times 10^{14}$
j-invariant \( -\frac{5971968}{25} \)
CM no
Rank $1$
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2=x^3-88200x-10118500\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z=x^3-88200xz^2-10118500z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-88200x-10118500\) Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -88200, -10118500])
 
gp: E = ellinit([0, 0, 0, -88200, -10118500])
 
magma: E := EllipticCurve([0, 0, 0, -88200, -10118500]);
 
oscar: E = elliptic_curve([0, 0, 0, -88200, -10118500])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z\)

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$(6632390/19321, 630002150/2685619)$$13.810287670490287491721205049$$\infty$

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: $N$  =  \( 529200 \) = $2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2}$
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: $\Delta$  =  $-317652300000000$ = $-1 \cdot 2^{8} \cdot 3^{3} \cdot 5^{8} \cdot 7^{6} $
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: $j$  =  \( -\frac{5971968}{25} \) = $-1 \cdot 2^{13} \cdot 3^{6} \cdot 5^{-2}$
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: $\mathrm{End}(E)$ = $\Z$
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$  =  \(\Z\)    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$
Faltings height: $h_{\mathrm{Faltings}}$ ≈ $1.6376363878876480256473230879$
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: $h_{\mathrm{stable}}$ ≈ $-0.87678883539738310999936567397$
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
$abc$ quality: $Q$ ≈ $1.0904350906962674$
Szpiro ratio: $\sigma_{m}$ ≈ $3.473895948438544$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$ = $ 1$
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: $r$ = $ 1$
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: $\mathrm{Reg}(E/\Q)$ ≈ $13.810287670490287491721205049$
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: $\Omega$ ≈ $0.13848209255333049950462117706$
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $\prod_{p}c_p$ = $ 4 $  = $ 2\cdot1\cdot2\cdot1 $
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: $\#E(\Q)_{\mathrm{tor}}$ = $1$
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: $ L'(E,1)$ ≈ $7.6499101414918202101995485133 $
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Ш${}_{\mathrm{an}}$  ≈  $1$    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

$\displaystyle 7.649910141 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.138482 \cdot 13.810288 \cdot 4}{1^2} \approx 7.649910141$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 529200.2.a.s

\( q - 6 q^{11} - q^{13} - q^{19} + O(q^{20}) \) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2612736
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:

$p$ Tamagawa number Kodaira symbol Reduction type Root number $\mathrm{ord}_p(N)$ $\mathrm{ord}_p(\Delta)$ $\mathrm{ord}_p(\mathrm{den}(j))$
$2$ $2$ $I_0^{*}$ additive -1 4 8 0
$3$ $1$ $II$ additive 1 3 3 0
$5$ $2$ $I_{2}^{*}$ additive 1 2 8 2
$7$ $1$ $I_0^{*}$ additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$3$ 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[415, 6, 414, 7], [4, 3, 9, 7], [104, 105, 105, 419], [386, 315, 385, 316], [209, 0, 0, 419], [83, 0, 0, 419], [179, 0, 0, 419], [69, 140, 70, 139], [1, 6, 0, 1], [3, 4, 8, 11], [1, 0, 6, 1]]
 
GL(2,Integers(420)).subgroup(gens)
 
Gens := [[415, 6, 414, 7], [4, 3, 9, 7], [104, 105, 105, 419], [386, 315, 385, 316], [209, 0, 0, 419], [83, 0, 0, 419], [179, 0, 0, 419], [69, 140, 70, 139], [1, 6, 0, 1], [3, 4, 8, 11], [1, 0, 6, 1]];
 
sub<GL(2,Integers(420))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \), index $16$, genus $0$, and generators

$\left(\begin{array}{rr} 415 & 6 \\ 414 & 7 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 104 & 105 \\ 105 & 419 \end{array}\right),\left(\begin{array}{rr} 386 & 315 \\ 385 & 316 \end{array}\right),\left(\begin{array}{rr} 209 & 0 \\ 0 & 419 \end{array}\right),\left(\begin{array}{rr} 83 & 0 \\ 0 & 419 \end{array}\right),\left(\begin{array}{rr} 179 & 0 \\ 0 & 419 \end{array}\right),\left(\begin{array}{rr} 69 & 140 \\ 70 & 139 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[420])$ is a degree-$278691840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/420\Z)$.

The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.

$\ell$ Reduction type Serre weight Serre conductor
$2$ additive $2$ \( 33075 = 3^{3} \cdot 5^{2} \cdot 7^{2} \)
$3$ additive $2$ \( 19600 = 2^{4} \cdot 5^{2} \cdot 7^{2} \)
$5$ additive $18$ \( 21168 = 2^{4} \cdot 3^{3} \cdot 7^{2} \)
$7$ additive $26$ \( 10800 = 2^{4} \cdot 3^{3} \cdot 5^{2} \)

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 3.
Its isogeny class 529200.s consists of 2 curves linked by isogenies of degree 3.

Twists

The minimal quadratic twist of this elliptic curve is 540.b1, its twist by $-420$.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

$p$-adic regulators

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.