Properties

Label 53361bo
Number of curves $6$
Conductor $53361$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bo1")
 
E.isogeny_class()
 

Elliptic curves in class 53361bo

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
53361.p6 53361bo1 \([1, -1, 1, 52249, 999870]\) \(103823/63\) \(-9572214650347503\) \([2]\) \(245760\) \(1.7557\) \(\Gamma_0(N)\)-optimal
53361.p5 53361bo2 \([1, -1, 1, -214556, 8256966]\) \(7189057/3969\) \(603049522971892689\) \([2, 2]\) \(491520\) \(2.1023\)  
53361.p3 53361bo3 \([1, -1, 1, -2082191, -1148929680]\) \(6570725617/45927\) \(6978144480103329687\) \([2]\) \(983040\) \(2.4488\)  
53361.p2 53361bo4 \([1, -1, 1, -2615801, 1626696096]\) \(13027640977/21609\) \(3283269625069193529\) \([2, 2]\) \(983040\) \(2.4488\)  
53361.p4 53361bo5 \([1, -1, 1, -1815386, 2640341652]\) \(-4354703137/17294403\) \(-2627710123263711221043\) \([2]\) \(1966080\) \(2.7954\)  
53361.p1 53361bo6 \([1, -1, 1, -41836136, 104164339920]\) \(53297461115137/147\) \(22335167517477507\) \([2]\) \(1966080\) \(2.7954\)  

Rank

sage: E.rank()
 

The elliptic curves in class 53361bo have rank \(0\).

Complex multiplication

The elliptic curves in class 53361bo do not have complex multiplication.

Modular form 53361.2.a.bo

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - 2 q^{5} + 3 q^{8} + 2 q^{10} - 2 q^{13} - q^{16} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.