Properties

Label 53650h
Number of curves 11
Conductor 5365053650
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("h1")
 
E.isogeny_class()
 

Elliptic curves in class 53650h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
53650.l1 53650h1 [1,0,0,373463,87821417][1, 0, 0, -373463, 87821417] 368677389247668649/34189865984-368677389247668649/34189865984 534216656000000-534216656000000 [][] 436800436800 1.86421.8642 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 53650h1 has rank 11.

Complex multiplication

The elliptic curves in class 53650h do not have complex multiplication.

Modular form 53650.2.a.h

sage: E.q_eigenform(10)
 
q+q2+q3+q4+q6+q82q9+5q11+q12+3q13+q166q172q184q19+O(q20)q + q^{2} + q^{3} + q^{4} + q^{6} + q^{8} - 2 q^{9} + 5 q^{11} + q^{12} + 3 q^{13} + q^{16} - 6 q^{17} - 2 q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display