Properties

Label 53650h1
Conductor 5365053650
Discriminant 5.342×1014-5.342\times 10^{14}
j-invariant 36867738924766864934189865984 -\frac{368677389247668649}{34189865984}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3373463x+87821417y^2+xy=x^3-373463x+87821417 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3373463xz2+87821417z3y^2z+xyz=x^3-373463xz^2+87821417z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3484008075x+4098848055750y^2=x^3-484008075x+4098848055750 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 0, -373463, 87821417])
 
gp: E = ellinit([1, 0, 0, -373463, 87821417])
 
magma: E := EllipticCurve([1, 0, 0, -373463, 87821417]);
 
oscar: E = elliptic_curve([1, 0, 0, -373463, 87821417])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(38,8565)(38, 8565)0.402690417840568101696542232060.40269041784056810169654223206\infty

Integral points

(38,8565) \left(38, 8565\right) , (38,8603) \left(38, -8603\right) , (386,909) \left(386, 909\right) , (386,1295) \left(386, -1295\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  53650 53650  = 25229372 \cdot 5^{2} \cdot 29 \cdot 37
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  534216656000000-534216656000000 = 121056293372-1 \cdot 2^{10} \cdot 5^{6} \cdot 29^{3} \cdot 37^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  36867738924766864934189865984 -\frac{368677389247668649}{34189865984}  = 1210293372413174893-1 \cdot 2^{-10} \cdot 29^{-3} \cdot 37^{-2} \cdot 41^{3} \cdot 17489^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.86420365705478952077530161071.8642036570547895207753016107
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.05948470083773933347492194411.0594847008377393334749219441
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.95224641700676780.9522464170067678
Szpiro ratio: σm\sigma_{m} ≈ 4.6009547122197694.600954712219769

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.402690417840568101696542232060.40269041784056810169654223206
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.497734829085044634795821104460.49773482908504463479582110446
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 60 60  = (25)132 ( 2 \cdot 5 )\cdot1\cdot3\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 12.02598277788362237290864652512.025982777883622372908646525
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

12.025982778L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.4977350.402690601212.025982778\displaystyle 12.025982778 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.497735 \cdot 0.402690 \cdot 60}{1^2} \approx 12.025982778

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 53650.2.a.l

q+q2+q3+q4+q6+q82q9+5q11+q12+3q13+q166q172q184q19+O(q20) q + q^{2} + q^{3} + q^{4} + q^{6} + q^{8} - 2 q^{9} + 5 q^{11} + q^{12} + 3 q^{13} + q^{16} - 6 q^{17} - 2 q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 436800
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 1010 I10I_{10} split multiplicative -1 1 10 10
55 11 I0I_0^{*} additive 1 2 6 0
2929 33 I3I_{3} split multiplicative -1 1 3 3
3737 22 I2I_{2} nonsplit multiplicative 1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[89, 2, 89, 3], [59, 2, 59, 3], [115, 2, 114, 3], [1, 2, 0, 1], [1, 0, 2, 1], [1, 1, 115, 0]]
 
GL(2,Integers(116)).subgroup(gens)
 
Gens := [[89, 2, 89, 3], [59, 2, 59, 3], [115, 2, 114, 3], [1, 2, 0, 1], [1, 0, 2, 1], [1, 1, 115, 0]];
 
sub<GL(2,Integers(116))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 116=2229 116 = 2^{2} \cdot 29 , index 22, genus 00, and generators

(892893),(592593),(11521143),(1201),(1021),(111150)\left(\begin{array}{rr} 89 & 2 \\ 89 & 3 \end{array}\right),\left(\begin{array}{rr} 59 & 2 \\ 59 & 3 \end{array}\right),\left(\begin{array}{rr} 115 & 2 \\ 114 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 115 & 0 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[116])K:=\Q(E[116]) is a degree-3273984032739840 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/116Z)\GL_2(\Z/116\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 725=5229 725 = 5^{2} \cdot 29
33 good 22 1850=25237 1850 = 2 \cdot 5^{2} \cdot 37
55 additive 1414 1073=2937 1073 = 29 \cdot 37
2929 split multiplicative 3030 1850=25237 1850 = 2 \cdot 5^{2} \cdot 37
3737 nonsplit multiplicative 3838 1450=25229 1450 = 2 \cdot 5^{2} \cdot 29

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 53650h consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 2146b1, its twist by 55.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.116.1 Z/2Z\Z/2\Z not in database
66 6.0.1560896.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type split ord add ss ord ord ord ord ord split ord nonsplit ss ord ord
λ\lambda-invariant(s) 2 3 - 3,1 1 1 1 1 1 2 1 1 1,1 1 1
μ\mu-invariant(s) 0 0 - 0,0 0 0 0 0 0 0 0 0 0,0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.