Properties

Label 53958bh2
Conductor 5395853958
Discriminant 4.491×10154.491\times 10^{15}
j-invariant 16393675881730338064 \frac{163936758817}{30338064}
CM no
Rank 00
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x360317x+4697505y^2+xy=x^3-60317x+4697505 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x360317xz2+4697505z3y^2z+xyz=x^3-60317xz^2+4697505z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x378170859x+219401305830y^2=x^3-78170859x+219401305830 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 0, -60317, 4697505])
 
gp: E = ellinit([1, 0, 0, -60317, 4697505])
 
magma: E := EllipticCurve([1, 0, 0, -60317, 4697505]);
 
oscar: E = elliptic_curve([1, 0, 0, -60317, 4697505])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(278,139)(-278, 139)0022
(90,45)(90, -45)0022

Integral points

(278,139) \left(-278, 139\right) , (90,45) \left(90, -45\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  53958 53958  = 23172322 \cdot 3 \cdot 17 \cdot 23^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  44911222747788964491122274778896 = 24381722362^{4} \cdot 3^{8} \cdot 17^{2} \cdot 23^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  16393675881730338064 \frac{163936758817}{30338064}  = 243813317242132^{-4} \cdot 3^{-8} \cdot 13^{3} \cdot 17^{-2} \cdot 421^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.72167821304610179022397135111.7216782130461017902239713511
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.153931105081526944820594935200.15393110508152694482059493520
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.075708137601691.07570813760169
Szpiro ratio: σm\sigma_{m} ≈ 4.09653731917459754.0965373191745975

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.414310575205430018111457090130.41431057520543001811145709013
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 256 256  = 2223222 2^{2}\cdot2^{3}\cdot2\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 6.62896920328688028978331344206.6289692032868802897833134420
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

6.628969203L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.4143111.000000256426.628969203\displaystyle 6.628969203 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.414311 \cdot 1.000000 \cdot 256}{4^2} \approx 6.628969203

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 53958.2.a.bn

q+q2+q3+q4+2q5+q6+q8+q9+2q10+4q11+q122q13+2q15+q16q17+q184q19+O(q20) q + q^{2} + q^{3} + q^{4} + 2 q^{5} + q^{6} + q^{8} + q^{9} + 2 q^{10} + 4 q^{11} + q^{12} - 2 q^{13} + 2 q^{15} + q^{16} - q^{17} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 405504
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I4I_{4} split multiplicative -1 1 4 4
33 88 I8I_{8} split multiplicative -1 1 8 8
1717 22 I2I_{2} nonsplit multiplicative 1 1 2 2
2323 44 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 8.48.0.89

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[5, 4, 3124, 3125], [3121, 8, 3120, 9], [1, 0, 8, 1], [599, 138, 966, 2715], [1841, 2760, 552, 2485], [1, 8, 0, 1], [277, 1196, 2714, 1795], [271, 0, 0, 3127]]
 
GL(2,Integers(3128)).subgroup(gens)
 
Gens := [[5, 4, 3124, 3125], [3121, 8, 3120, 9], [1, 0, 8, 1], [599, 138, 966, 2715], [1841, 2760, 552, 2485], [1, 8, 0, 1], [277, 1196, 2714, 1795], [271, 0, 0, 3127]];
 
sub<GL(2,Integers(3128))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 3128=231723 3128 = 2^{3} \cdot 17 \cdot 23 , index 192192, genus 11, and generators

(5431243125),(3121831209),(1081),(5991389662715),(184127605522485),(1801),(277119627141795),(271003127)\left(\begin{array}{rr} 5 & 4 \\ 3124 & 3125 \end{array}\right),\left(\begin{array}{rr} 3121 & 8 \\ 3120 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 599 & 138 \\ 966 & 2715 \end{array}\right),\left(\begin{array}{rr} 1841 & 2760 \\ 552 & 2485 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 277 & 1196 \\ 2714 & 1795 \end{array}\right),\left(\begin{array}{rr} 271 & 0 \\ 0 & 3127 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[3128])K:=\Q(E[3128]) is a degree-167430979584167430979584 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/3128Z)\GL_2(\Z/3128\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 529=232 529 = 23^{2}
33 split multiplicative 44 17986=217232 17986 = 2 \cdot 17 \cdot 23^{2}
1717 nonsplit multiplicative 1818 3174=23232 3174 = 2 \cdot 3 \cdot 23^{2}
2323 additive 266266 102=2317 102 = 2 \cdot 3 \cdot 17

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 53958bh consists of 6 curves linked by isogenies of degrees dividing 8.

Twists

The minimal quadratic twist of this elliptic curve is 102b2, its twist by 23-23.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(23)\Q(\sqrt{-23}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(17,23)\Q(\sqrt{-17}, \sqrt{23}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(17,23)\Q(\sqrt{17}, \sqrt{23}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(2,23)\Q(\sqrt{-2}, \sqrt{-23}) Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.0.5983385641216.9 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
88 8.0.95734170259456.18 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 deg 8 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 17 23
Reduction type split split nonsplit add
λ\lambda-invariant(s) 7 1 0 -
μ\mu-invariant(s) 0 0 0 -

All Iwasawa λ\lambda and μ\mu-invariants for primes p3p\ge 3 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.