Properties

Label 540.e
Number of curves 22
Conductor 540540
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 540.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
540.e1 540e1 [0,0,0,72,236][0, 0, 0, -72, -236] 5971968/25-5971968/25 172800-172800 [][] 7272 0.14004-0.14004 Γ0(N)\Gamma_0(N)-optimal
540.e2 540e2 [0,0,0,168,1244][0, 0, 0, 168, -1244] 8429568/156258429568/15625 972000000-972000000 [3][3] 216216 0.409270.40927  

Rank

sage: E.rank()
 

The elliptic curves in class 540.e have rank 00.

Complex multiplication

The elliptic curves in class 540.e do not have complex multiplication.

Modular form 540.2.a.e

sage: E.q_eigenform(10)
 
q+q5q7+6q11q13q19+O(q20)q + q^{5} - q^{7} + 6 q^{11} - q^{13} - q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.