Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 540.e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
540.e1 | 540e1 | \([0, 0, 0, -72, -236]\) | \(-5971968/25\) | \(-172800\) | \([]\) | \(72\) | \(-0.14004\) | \(\Gamma_0(N)\)-optimal |
540.e2 | 540e2 | \([0, 0, 0, 168, -1244]\) | \(8429568/15625\) | \(-972000000\) | \([3]\) | \(216\) | \(0.40927\) |
Rank
sage: E.rank()
The elliptic curves in class 540.e have rank \(0\).
Complex multiplication
The elliptic curves in class 540.e do not have complex multiplication.Modular form 540.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.