Properties

Label 540f1
Conductor 540540
Discriminant 54000-54000
j-invariant 6912125 \frac{6912}{125}
CM no
Rank 00
Torsion structure Z/3Z\Z/{3}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+3x11y^2=x^3+3x-11 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+3xz211z3y^2z=x^3+3xz^2-11z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+3x11y^2=x^3+3x-11 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, 3, -11])
 
gp: E = ellinit([0, 0, 0, 3, -11])
 
magma: E := EllipticCurve([0, 0, 0, 3, -11]);
 
oscar: E = elliptic_curve([0, 0, 0, 3, -11])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/3Z\Z/{3}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(3,5)(3, 5)0033

Integral points

(3,±5)(3,\pm 5) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  540 540  = 223352^{2} \cdot 3^{3} \cdot 5
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  54000-54000 = 1243353-1 \cdot 2^{4} \cdot 3^{3} \cdot 5^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  6912125 \frac{6912}{125}  = 2833532^{8} \cdot 3^{3} \cdot 5^{-3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.41148329766673364631778188527-0.41148329766673364631778188527
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.91718543002040950563900390165-0.91718543002040950563900390165
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.0271958101219161.027195810121916
Szpiro ratio: σm\sigma_{m} ≈ 2.9116641138097512.911664113809751

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.72499382318238478320161270881.7249938231823847832016127088
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 9 9  = 313 3\cdot1\cdot3
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 33
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.72499382318238478320161270881.7249938231823847832016127088
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.724993823L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.7249941.0000009321.724993823\displaystyle 1.724993823 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.724994 \cdot 1.000000 \cdot 9}{3^2} \approx 1.724993823

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   540.2.a.f

q+q5+2q7+2q133q17+5q19+O(q20) q + q^{5} + 2 q^{7} + 2 q^{13} - 3 q^{17} + 5 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 36
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 33 IVIV additive -1 2 4 0
33 11 IIII additive -1 3 3 0
55 33 I3I_{3} split multiplicative -1 1 3 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B.1.1 3.8.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[6, 1, 13, 24], [1, 0, 6, 1], [4, 3, 9, 7], [7, 6, 21, 19], [25, 6, 24, 7], [3, 4, 8, 11], [1, 6, 0, 1]]
 
GL(2,Integers(30)).subgroup(gens)
 
Gens := [[6, 1, 13, 24], [1, 0, 6, 1], [4, 3, 9, 7], [7, 6, 21, 19], [25, 6, 24, 7], [3, 4, 8, 11], [1, 6, 0, 1]];
 
sub<GL(2,Integers(30))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has label 30.16.0-30.b.1.4, level 30=235 30 = 2 \cdot 3 \cdot 5 , index 1616, genus 00, and generators

(611324),(1061),(4397),(762119),(256247),(34811),(1601)\left(\begin{array}{rr} 6 & 1 \\ 13 & 24 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 21 & 19 \end{array}\right),\left(\begin{array}{rr} 25 & 6 \\ 24 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[30])K:=\Q(E[30]) is a degree-86408640 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/30Z)\GL_2(\Z/30\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 135=335 135 = 3^{3} \cdot 5
33 additive 66 4=22 4 = 2^{2}
55 split multiplicative 66 108=2233 108 = 2^{2} \cdot 3^{3}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 540f consists of 2 curves linked by isogenies of degree 3.

Twists

The minimal quadratic twist of this elliptic curve is 540a2, its twist by 3-3.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/3Z\cong \Z/{3}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.135.1 Z/6Z\Z/6\Z not in database
66 6.0.273375.1 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
66 6.0.34992.1 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
99 9.3.1594323000000.3 Z/9Z\Z/9\Z not in database
1212 deg 12 Z/12Z\Z/12\Z not in database
1818 18.0.54226471004352000000.1 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5
Reduction type add add split
λ\lambda-invariant(s) - - 1
μ\mu-invariant(s) - - 0

All Iwasawa λ\lambda and μ\mu-invariants for primes p5p\ge 5 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.