Properties

Label 5415c2
Conductor 54155415
Discriminant 1.320×10151.320\times 10^{15}
j-invariant 4858716844928048275 \frac{48587168449}{28048275}
CM no
Rank 22
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x227443x+75438y^2+xy=x^3+x^2-27443x+75438 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z27443xz2+75438z3y^2z+xyz=x^3+x^2z-27443xz^2+75438z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x335566803x+4053133998y^2=x^3-35566803x+4053133998 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 0, -27443, 75438])
 
gp: E = ellinit([1, 1, 0, -27443, 75438])
 
magma: E := EllipticCurve([1, 1, 0, -27443, 75438]);
 
oscar: E = elliptic_curve([1, 1, 0, -27443, 75438])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZZ/2Z\Z \oplus \Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(2,362)(-2, 362)1.44214137704462030970617918951.4421413770446203097061791895\infty
(369/4,11199/8)(-369/4, 11199/8)2.23498897444179962942336897572.2349889744417996294233689757\infty
(11/4,11/8)(11/4, -11/8)0022

Integral points

(58,1244) \left(-58, 1244\right) , (58,1186) \left(-58, -1186\right) , (2,362) \left(-2, 362\right) , (2,360) \left(-2, -360\right) , (214,1908) \left(214, 1908\right) , (214,2122) \left(214, -2122\right) , (454,8798) \left(454, 8798\right) , (454,9252) \left(454, -9252\right) , (5774,435728) \left(5774, 435728\right) , (5774,441502) \left(5774, -441502\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  5415 5415  = 351923 \cdot 5 \cdot 19^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  13195558079052751319555807905275 = 310521973^{10} \cdot 5^{2} \cdot 19^{7}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  4858716844928048275 \frac{48587168449}{28048275}  = 310521914138933^{-10} \cdot 5^{-2} \cdot 19^{-1} \cdot 41^{3} \cdot 89^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.59086212733011385441995068491.5908621273301138544199506849
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.118642637746893624415436968960.11864263774689362441543696896
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.03179787442961751.0317978744296175
Szpiro ratio: σm\sigma_{m} ≈ 4.9172516508601124.917251650860112

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 2 2
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 2 2
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 2.88555007638813258408391008252.8855500763881325840839100825
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.410179018377174207159674518120.41017901837717420715967451812
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 16 16  = 2222 2\cdot2\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(2)(E,1)/2! L^{(2)}(E,1)/2! ≈ 4.73436839124425708989829126724.7343683912442570898982912672
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.734368391L(2)(E,1)/2!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.4101792.88555016224.734368391\displaystyle 4.734368391 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.410179 \cdot 2.885550 \cdot 16}{2^2} \approx 4.734368391

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   5415.2.a.h

q+q2q3q4q5q62q73q8+q9q106q11+q122q14+q15q166q17+q18+O(q20) q + q^{2} - q^{3} - q^{4} - q^{5} - q^{6} - 2 q^{7} - 3 q^{8} + q^{9} - q^{10} - 6 q^{11} + q^{12} - 2 q^{14} + q^{15} - q^{16} - 6 q^{17} + q^{18} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 28800
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 22 I10I_{10} nonsplit multiplicative 1 1 10 10
55 22 I2I_{2} nonsplit multiplicative 1 1 2 2
1919 44 I1I_{1}^{*} additive -1 2 7 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 2, 2, 5], [856, 289, 285, 856], [1, 4, 0, 1], [457, 4, 914, 9], [1137, 4, 1136, 5], [422, 1, 359, 0], [1, 0, 4, 1], [3, 4, 8, 11], [761, 4, 382, 9]]
 
GL(2,Integers(1140)).subgroup(gens)
 
Gens := [[1, 2, 2, 5], [856, 289, 285, 856], [1, 4, 0, 1], [457, 4, 914, 9], [1137, 4, 1136, 5], [422, 1, 359, 0], [1, 0, 4, 1], [3, 4, 8, 11], [761, 4, 382, 9]];
 
sub<GL(2,Integers(1140))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1140=223519 1140 = 2^{2} \cdot 3 \cdot 5 \cdot 19 , index 1212, genus 00, and generators

(1225),(856289285856),(1401),(45749149),(1137411365),(42213590),(1041),(34811),(76143829)\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 856 & 289 \\ 285 & 856 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 457 & 4 \\ 914 & 9 \end{array}\right),\left(\begin{array}{rr} 1137 & 4 \\ 1136 & 5 \end{array}\right),\left(\begin{array}{rr} 422 & 1 \\ 359 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 761 & 4 \\ 382 & 9 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1140])K:=\Q(E[1140]) is a degree-2269347840022693478400 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1140Z)\GL_2(\Z/1140\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 361=192 361 = 19^{2}
33 nonsplit multiplicative 44 1805=5192 1805 = 5 \cdot 19^{2}
55 nonsplit multiplicative 66 361=192 361 = 19^{2}
1919 additive 200200 15=35 15 = 3 \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 5415c consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 285a2, its twist by 19-19.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(19)\Q(\sqrt{19}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.0.17100.4 Z/4Z\Z/4\Z not in database
88 8.0.1688960160000.14 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ord nonsplit nonsplit ord ord ss ord add ord ord ss ord ss ord ord
λ\lambda-invariant(s) 2 2 2 2 2 2,2 2 - 2 2 2,2 2 2,2 2 2
μ\mu-invariant(s) 0 0 0 0 0 0,0 0 - 0 0 0,0 0 0,0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.