Properties

Label 5415e
Number of curves 22
Conductor 54155415
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 5415e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5415.f2 5415e1 [0,1,1,215,1256][0, -1, 1, -215, 1256] 3058794496/911253058794496/91125 3289612532896125 [][] 12961296 0.219250.21925 Γ0(N)\Gamma_0(N)-optimal
5415.f1 5415e2 [0,1,1,17315,882761][0, -1, 1, -17315, 882761] 1590409933520896/451590409933520896/45 1624516245 [][] 38883888 0.768550.76855  

Rank

sage: E.rank()
 

The elliptic curves in class 5415e have rank 11.

Complex multiplication

The elliptic curves in class 5415e do not have complex multiplication.

Modular form 5415.2.a.e

sage: E.q_eigenform(10)
 
qq32q4+q5+2q7+q93q11+2q12+4q13q15+4q16+O(q20)q - q^{3} - 2 q^{4} + q^{5} + 2 q^{7} + q^{9} - 3 q^{11} + 2 q^{12} + 4 q^{13} - q^{15} + 4 q^{16} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.