Properties

Label 5415e1
Conductor 54155415
Discriminant 3289612532896125
j-invariant 305879449691125 \frac{3058794496}{91125}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x3x2215x+1256y^2+y=x^3-x^2-215x+1256 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x3x2z215xz2+1256z3y^2z+yz^2=x^3-x^2z-215xz^2+1256z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3279072x+55264464y^2=x^3-279072x+55264464 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 1, -215, 1256])
 
gp: E = ellinit([0, -1, 1, -215, 1256])
 
magma: E := EllipticCurve([0, -1, 1, -215, 1256]);
 
oscar: E = elliptic_curve([0, -1, 1, -215, 1256])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(20,67)(20, 67)0.246414663943316338522128158790.24641466394331633852212815879\infty

Integral points

(10,2) \left(10, 2\right) , (10,3) \left(10, -3\right) , (20,67) \left(20, 67\right) , (20,68) \left(20, -68\right) , (150,1822) \left(150, 1822\right) , (150,1823) \left(150, -1823\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  5415 5415  = 351923 \cdot 5 \cdot 19^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  3289612532896125 = 36531923^{6} \cdot 5^{3} \cdot 19^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  305879449691125 \frac{3058794496}{91125}  = 2153653173192^{15} \cdot 3^{-6} \cdot 5^{-3} \cdot 17^{3} \cdot 19
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.219245867146038689718051141550.21924586714603868971805114155
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.27149396271503472028345343043-0.27149396271503472028345343043
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.98270375517261610.9827037551726161
Szpiro ratio: σm\sigma_{m} ≈ 3.22558990418378853.2255899041837885

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.246414663943316338522128158790.24641466394331633852212815879
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 2.06639030460154643380883593652.0663903046015464338088359365
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 6 6  = 231 2\cdot3\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.05513323490470289916127205923.0551332349047028991612720592
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.055133235L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor212.0663900.2464156123.055133235\displaystyle 3.055133235 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 2.066390 \cdot 0.246415 \cdot 6}{1^2} \approx 3.055133235

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   5415.2.a.f

qq32q4+q5+2q7+q93q11+2q12+4q13q15+4q16+O(q20) q - q^{3} - 2 q^{4} + q^{5} + 2 q^{7} + q^{9} - 3 q^{11} + 2 q^{12} + 4 q^{13} - q^{15} + 4 q^{16} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1296
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 22 I6I_{6} nonsplit multiplicative 1 1 6 6
55 33 I3I_{3} split multiplicative -1 1 3 3
1919 11 IIII additive -1 2 2 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[96, 481, 475, 381], [63, 2, 400, 7], [3, 4, 8, 11], [4, 3, 9, 7], [1, 0, 6, 1], [565, 6, 564, 7], [457, 6, 231, 19], [1, 6, 0, 1]]
 
GL(2,Integers(570)).subgroup(gens)
 
Gens := [[96, 481, 475, 381], [63, 2, 400, 7], [3, 4, 8, 11], [4, 3, 9, 7], [1, 0, 6, 1], [565, 6, 564, 7], [457, 6, 231, 19], [1, 6, 0, 1]];
 
sub<GL(2,Integers(570))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 570=23519 570 = 2 \cdot 3 \cdot 5 \cdot 19 , index 1616, genus 00, and generators

(96481475381),(6324007),(34811),(4397),(1061),(56565647),(457623119),(1601)\left(\begin{array}{rr} 96 & 481 \\ 475 & 381 \end{array}\right),\left(\begin{array}{rr} 63 & 2 \\ 400 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 565 & 6 \\ 564 & 7 \end{array}\right),\left(\begin{array}{rr} 457 & 6 \\ 231 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[570])K:=\Q(E[570]) is a degree-10637568001063756800 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/570Z)\GL_2(\Z/570\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 1805=5192 1805 = 5 \cdot 19^{2}
33 nonsplit multiplicative 44 361=192 361 = 19^{2}
55 split multiplicative 66 1083=3192 1083 = 3 \cdot 19^{2}
1919 additive 7474 15=35 15 = 3 \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 5415e consists of 2 curves linked by isogenies of degree 3.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(19)\Q(\sqrt{-19}) Z/3Z\Z/3\Z not in database
33 3.3.7220.1 Z/2Z\Z/2\Z not in database
66 6.6.260642000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.2.66854673.1 Z/3Z\Z/3\Z not in database
66 6.0.990439600.1 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 12.0.4469547301936929.2 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.0.763100446936913704175635803760266357421875.1 Z/9Z\Z/9\Z not in database
1818 18.6.19123847893057641914829888000000.1 Z/6Z\Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss nonsplit split ord ord ord ss add ord ord ord ord ord ord ord
λ\lambda-invariant(s) 1,2 1 2 1 1 1 1,1 - 1 1 1 1 1 1 1
μ\mu-invariant(s) 0,0 0 0 0 0 0 0,0 - 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.