Properties

Label 5415j1
Conductor 54155415
Discriminant 1.548×10151.548\times 10^{15}
j-invariant 305879449691125 \frac{3058794496}{91125}
CM no
Rank 11
Torsion structure Z/3Z\Z/{3}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x3+x277735x8150461y^2+y=x^3+x^2-77735x-8150461 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x3+x2z77735xz28150461z3y^2z+yz^2=x^3+x^2z-77735xz^2-8150461z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3100744992x379058958576y^2=x^3-100744992x-379058958576 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 1, -77735, -8150461])
 
gp: E = ellinit([0, 1, 1, -77735, -8150461])
 
magma: E := EllipticCurve([0, 1, 1, -77735, -8150461]);
 
oscar: E = elliptic_curve([0, 1, 1, -77735, -8150461])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/3Z\Z \oplus \Z/{3}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(149,382)(-149, 382)2.41293407881379584984709789622.4129340788137958498470978962\infty
(481,8122)(481, 8122)0033

Integral points

(149,382) \left(-149, 382\right) , (149,383) \left(-149, -383\right) , (481,8122) \left(481, 8122\right) , (481,8123) \left(481, -8123\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  5415 5415  = 351923 \cdot 5 \cdot 19^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  15476271821111251547627182111125 = 36531983^{6} \cdot 5^{3} \cdot 19^{8}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  305879449691125 \frac{3058794496}{91125}  = 2153653173192^{15} \cdot 3^{-6} \cdot 5^{-3} \cdot 17^{3} \cdot 19
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.69146535672925891972256485751.6914653567292589197225648575
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.27149396271503472028345343043-0.27149396271503472028345343043
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.98270375517261610.9827037551726161
Szpiro ratio: σm\sigma_{m} ≈ 5.2805836818867685.280583681886768

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 2.41293407881379584984709789622.4129340788137958498470978962
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.286441734464400636497905223920.28644173446440063649790522392
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 54 54  = (23)33 ( 2 \cdot 3 )\cdot3\cdot3
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 33
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.14699013610210681028491854384.1469901361021068102849185438
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.146990136L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2864422.41293454324.146990136\displaystyle 4.146990136 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.286442 \cdot 2.412934 \cdot 54}{3^2} \approx 4.146990136

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   5415.2.a.g

q+q32q4+q5+2q7+q93q112q124q13+q15+4q16+O(q20) q + q^{3} - 2 q^{4} + q^{5} + 2 q^{7} + q^{9} - 3 q^{11} - 2 q^{12} - 4 q^{13} + q^{15} + 4 q^{16} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 24624
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 66 I6I_{6} split multiplicative -1 1 6 6
55 33 I3I_{3} split multiplicative -1 1 3 3
1919 33 IVIV^{*} additive 1 2 8 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B.1.1 3.8.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[6, 1, 25, 21], [1, 0, 6, 1], [4, 3, 9, 7], [27, 28, 20, 23], [7, 6, 21, 19], [25, 6, 24, 7], [3, 4, 8, 11], [1, 6, 0, 1]]
 
GL(2,Integers(30)).subgroup(gens)
 
Gens := [[6, 1, 25, 21], [1, 0, 6, 1], [4, 3, 9, 7], [27, 28, 20, 23], [7, 6, 21, 19], [25, 6, 24, 7], [3, 4, 8, 11], [1, 6, 0, 1]];
 
sub<GL(2,Integers(30))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has label 30.16.0-30.a.1.4, level 30=235 30 = 2 \cdot 3 \cdot 5 , index 1616, genus 00, and generators

(612521),(1061),(4397),(27282023),(762119),(256247),(34811),(1601)\left(\begin{array}{rr} 6 & 1 \\ 25 & 21 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 27 & 28 \\ 20 & 23 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 21 & 19 \end{array}\right),\left(\begin{array}{rr} 25 & 6 \\ 24 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[30])K:=\Q(E[30]) is a degree-86408640 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/30Z)\GL_2(\Z/30\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 1805=5192 1805 = 5 \cdot 19^{2}
33 split multiplicative 44 361=192 361 = 19^{2}
55 split multiplicative 66 1083=3192 1083 = 3 \cdot 19^{2}
1919 additive 146146 15=35 15 = 3 \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 5415j consists of 2 curves linked by isogenies of degree 3.

Twists

The minimal quadratic twist of this elliptic curve is 5415e1, its twist by 19-19.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/3Z\cong \Z/{3}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.3.7220.1 Z/6Z\Z/6\Z not in database
66 6.6.260642000.1 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
66 6.0.3518667.2 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
99 9.3.10547765175032296875.1 Z/9Z\Z/9\Z not in database
1212 deg 12 Z/12Z\Z/12\Z not in database
1818 18.0.2788139363326671805632000000.1 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss split split ord ord ord ss add ord ord ord ord ord ord ord
λ\lambda-invariant(s) 11,2 4 4 1 1 1 1,1 - 1 1 1 1 1 1 1
μ\mu-invariant(s) 0,0 0 0 0 0 0 0,0 - 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.