Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+8115x+1272600\) | (homogenize, simplify) |
\(y^2z+xyz=x^3+8115xz^2+1272600z^3\) | (dehomogenize, simplify) |
\(y^2=x^3+10517013x+59342874534\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{4}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(87, 1581)$ | $0$ | $4$ |
Integral points
\( \left(-84, 42\right) \), \( \left(87, 1581\right) \), \( \left(87, -1668\right) \)
Invariants
Conductor: | $N$ | = | \( 5415 \) | = | $3 \cdot 5 \cdot 19^{2}$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $\Delta$ | = | $-733086559947375$ | = | $-1 \cdot 3^{8} \cdot 5^{3} \cdot 19^{7} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | $j$ | = | \( \frac{1256216039}{15582375} \) | = | $3^{-8} \cdot 5^{-3} \cdot 13^{3} \cdot 19^{-1} \cdot 83^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.5332111638501289200195977555$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.060991674266908690015084039557$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $Q$ | ≈ | $0.9487490541305785$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.843035433065394$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Mordell-Weil rank: | $r$ | = | $ 0$ | comment: Rank
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $\Omega$ | ≈ | $0.37447308777548412447885751608$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 96 $ = $ 2^{3}\cdot3\cdot2^{2} $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: | $ L(E,1)$ | ≈ | $2.2468385266529047468731450965 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
BSD formula
$\displaystyle 2.246838527 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.374473 \cdot 1.000000 \cdot 96}{4^2} \approx 2.246838527$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 25920 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
$5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$19$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.12.0.7 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 760 = 2^{3} \cdot 5 \cdot 19 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 99 & 98 \\ 298 & 675 \end{array}\right),\left(\begin{array}{rr} 308 & 1 \\ 631 & 6 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 753 & 8 \\ 752 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 754 & 755 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 592 & 757 \\ 275 & 758 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 289 & 288 \\ 678 & 295 \end{array}\right)$.
The torsion field $K:=\Q(E[760])$ is a degree-$1891123200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/760\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 1805 = 5 \cdot 19^{2} \) |
$3$ | split multiplicative | $4$ | \( 361 = 19^{2} \) |
$5$ | split multiplicative | $6$ | \( 1083 = 3 \cdot 19^{2} \) |
$19$ | additive | $200$ | \( 15 = 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 5415l
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 285c1, its twist by $-19$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-95}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.2.548720.1 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.188183524000000.17 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.2036265625.2 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.7527340960000.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.2.8334036681507.2 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 19 |
---|---|---|---|---|
Reduction type | ord | split | split | add |
$\lambda$-invariant(s) | 2 | 3 | 1 | - |
$\mu$-invariant(s) | 0 | 0 | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.