Properties

Label 5445g8
Conductor 54455445
Discriminant 2.780×1017-2.780\times 10^{17}
j-invariant 147281603041215233605 -\frac{147281603041}{215233605}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3x2119813x29940798y^2+xy+y=x^3-x^2-119813x-29940798 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3x2z119813xz229940798z3y^2z+xyz+yz^2=x^3-x^2z-119813xz^2-29940798z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31917003x1918128058y^2=x^3-1917003x-1918128058 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 1, -119813, -29940798])
 
gp: E = ellinit([1, -1, 1, -119813, -29940798])
 
magma: E := EllipticCurve([1, -1, 1, -119813, -29940798]);
 
oscar: E = elliptic_curve([1, -1, 1, -119813, -29940798])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(123237/16,42968765/64)(123237/16, 42968765/64)9.35287957757986310986077217549.3528795775798631098607721754\infty
(1739/4,1743/8)(1739/4, -1743/8)0022

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  5445 5445  = 3251123^{2} \cdot 5 \cdot 11^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  277967306709898245-277967306709898245 = 13225116-1 \cdot 3^{22} \cdot 5 \cdot 11^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  147281603041215233605 -\frac{147281603041}{215233605}  = 13165152813-1 \cdot 3^{-16} \cdot 5^{-1} \cdot 5281^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.03912338921034163970223003172.0391233892103416397022300317
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.290869608477101521973635624260.29086960847710152197363562426
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.05949190234652011.0594919023465201
Szpiro ratio: σm\sigma_{m} ≈ 5.5745274433860425.574527443386042

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 9.35287957757986310986077217549.3528795775798631098607721754
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.121906847266839194972633213200.12190684726683919497263321320
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 2212 2^{2}\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.28036012433833571914426760802.2803601243383357191442676080
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.280360124L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1219079.3528808222.280360124\displaystyle 2.280360124 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.121907 \cdot 9.352880 \cdot 8}{2^2} \approx 2.280360124

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   5445.2.a.c

qq2q4q5+3q8+q10+2q13q16+2q174q19+O(q20) q - q^{2} - q^{4} - q^{5} + 3 q^{8} + q^{10} + 2 q^{13} - q^{16} + 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 40960
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 44 I16I_{16}^{*} additive -1 2 22 16
55 11 I1I_{1} nonsplit multiplicative 1 1 1 1
1111 22 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 16.48.0.134

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1759, 1408, 5104, 1407], [1, 0, 32, 1], [694, 4323, 3245, 4588], [1, 32, 0, 1], [5, 28, 68, 381], [23, 18, 2718, 3275], [5249, 32, 5248, 33], [1439, 0, 0, 5279], [540, 2431, 1199, 804], [3301, 3872, 5236, 3873]]
 
GL(2,Integers(5280)).subgroup(gens)
 
Gens := [[1759, 1408, 5104, 1407], [1, 0, 32, 1], [694, 4323, 3245, 4588], [1, 32, 0, 1], [5, 28, 68, 381], [23, 18, 2718, 3275], [5249, 32, 5248, 33], [1439, 0, 0, 5279], [540, 2431, 1199, 804], [3301, 3872, 5236, 3873]];
 
sub<GL(2,Integers(5280))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 5280=253511 5280 = 2^{5} \cdot 3 \cdot 5 \cdot 11 , index 768768, genus 1313, and generators

(1759140851041407),(10321),(694432332454588),(13201),(52868381),(231827183275),(524932524833),(1439005279),(54024311199804),(3301387252363873)\left(\begin{array}{rr} 1759 & 1408 \\ 5104 & 1407 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 694 & 4323 \\ 3245 & 4588 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 28 \\ 68 & 381 \end{array}\right),\left(\begin{array}{rr} 23 & 18 \\ 2718 & 3275 \end{array}\right),\left(\begin{array}{rr} 5249 & 32 \\ 5248 & 33 \end{array}\right),\left(\begin{array}{rr} 1439 & 0 \\ 0 & 5279 \end{array}\right),\left(\begin{array}{rr} 540 & 2431 \\ 1199 & 804 \end{array}\right),\left(\begin{array}{rr} 3301 & 3872 \\ 5236 & 3873 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[5280])K:=\Q(E[5280]) is a degree-155713536000155713536000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/5280Z)\GL_2(\Z/5280\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
33 additive 88 605=5112 605 = 5 \cdot 11^{2}
55 nonsplit multiplicative 66 1089=32112 1089 = 3^{2} \cdot 11^{2}
1111 additive 6262 45=325 45 = 3^{2} \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4, 8 and 16.
Its isogeny class 5445g consists of 8 curves linked by isogenies of degrees dividing 16.

Twists

The minimal quadratic twist of this elliptic curve is 15a6, its twist by 3333.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(5)\Q(\sqrt{-5}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(165)\Q(\sqrt{165}) Z/4Z\Z/4\Z 2.2.165.1-15.1-f1
22 Q(33)\Q(\sqrt{-33}) Z/4Z\Z/4\Z not in database
44 Q(5,33)\Q(\sqrt{-5}, \sqrt{-33}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(2,33)\Q(\sqrt{-2}, \sqrt{-33}) Z/8Z\Z/8\Z not in database
44 Q(10,33)\Q(\sqrt{10}, \sqrt{-33}) Z/8Z\Z/8\Z not in database
88 8.0.1214383104000000.39 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.4.4743684000000.26 Z/8Z\Z/8\Z not in database
88 8.0.48575324160000.276 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.0.310882074624000000.7 Z/16Z\Z/16\Z not in database
88 8.0.310882074624000000.19 Z/16Z\Z/16\Z not in database
88 8.2.1621005766875.2 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/16Z\Z/16\Z not in database
1616 deg 16 Z/16Z\Z/16\Z not in database
1616 16.0.96647664322522304741376000000000000.12 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ord add nonsplit ss add ord ord ord ss ord ss ord ord ord ord
λ\lambda-invariant(s) 3 - 1 3,1 - 1 1 1 1,1 1 1,1 1 1 1 1
μ\mu-invariant(s) 3 - 0 0,0 - 0 0 0 0,0 0 0,0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.