Properties

Label 550.e
Number of curves 33
Conductor 550550
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 550.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
550.e1 550f3 [1,0,1,758201,254051548][1, 0, 1, -758201, 254051548] 24680042791780949/369098752-24680042791780949/369098752 720896000000000-720896000000000 [][] 60006000 1.98781.9878  
550.e2 550f1 [1,0,1,701,7202][1, 0, 1, -701, -7202] 19465109/22-19465109/22 42968750-42968750 [][] 240240 0.378410.37841 Γ0(N)\Gamma_0(N)-optimal
550.e3 550f2 [1,0,1,4924,75298][1, 0, 1, 4924, 75298] 6761990971/51536326761990971/5153632 10065687500000-10065687500000 [][] 12001200 1.18311.1831  

Rank

sage: E.rank()
 

The elliptic curves in class 550.e have rank 11.

Complex multiplication

The elliptic curves in class 550.e do not have complex multiplication.

Modular form 550.2.a.e

sage: E.q_eigenform(10)
 
qq2+q3+q4q63q7q82q9+q11+q124q13+3q14+q163q17+2q185q19+O(q20)q - q^{2} + q^{3} + q^{4} - q^{6} - 3 q^{7} - q^{8} - 2 q^{9} + q^{11} + q^{12} - 4 q^{13} + 3 q^{14} + q^{16} - 3 q^{17} + 2 q^{18} - 5 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(12552515551)\left(\begin{array}{rrr} 1 & 25 & 5 \\ 25 & 1 & 5 \\ 5 & 5 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.