Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 550.e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
550.e1 | 550f3 | \([1, 0, 1, -758201, 254051548]\) | \(-24680042791780949/369098752\) | \(-720896000000000\) | \([]\) | \(6000\) | \(1.9878\) | |
550.e2 | 550f1 | \([1, 0, 1, -701, -7202]\) | \(-19465109/22\) | \(-42968750\) | \([]\) | \(240\) | \(0.37841\) | \(\Gamma_0(N)\)-optimal |
550.e3 | 550f2 | \([1, 0, 1, 4924, 75298]\) | \(6761990971/5153632\) | \(-10065687500000\) | \([]\) | \(1200\) | \(1.1831\) |
Rank
sage: E.rank()
The elliptic curves in class 550.e have rank \(1\).
Complex multiplication
The elliptic curves in class 550.e do not have complex multiplication.Modular form 550.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrr} 1 & 25 & 5 \\ 25 & 1 & 5 \\ 5 & 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.